skip to main content


Search for: All records

Creators/Authors contains: "Lee, Young Joo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A solvent-free post-treatment process known as vapor phase infiltration (VPI) is used to engineer the organic solvent reverse osmosis (OSRO) performance of polymer of intrinsic microporosity 1 (PIM-1) membranes via infiltration of trimethylaluminum (TMA) metal-organic vapor. The infiltration of inorganic aluminum constituents hybridizes the pure polymer PIM-1 into an organic-inorganic material (AlOxHy/PIM-1) with enhanced chemical stability. A homogenous distribution of inorganic loading in PIM-1 is achieved due to the reaction-limited infiltration mechanism, and the OSRO performance is enhanced as a result. OSRO separations of ethanol/isooctane mixtures using these membranes are shown to be capable of breaking the azeotropic composition with a separation factor for ethanol over isooctane greater than 5 and an ethanol permeance of 0.1 Lm–2h–1bar–1. Thus, these organic-inorganic hybrid membranes created via VPI show promise as an alternative method for separating azeotropic liquid mixtures. 
    more » « less
  2. Connecting pre-bent liquid crystal elastomer fibers into a loop generates a self-regulated synchronized motion with snap through. 
    more » « less
  3. Abstract

    To complete a successful and aesthetic breast reconstruction for breast cancer survivors, tissue reinforcing acellular dermal matrices (ADMs) are widely utilized to create slings/pockets to keep breast implants or autologous tissue transfer secured against the chest wall in the desired location. However, ADM sheets are 2D and cannot completely cover the entire implant without wrinkles. Here, guided by finite element modeling, a kirigami strategy is presented to cut the ADM sheets with locally and precisely controlled stretchability, curvature, and elasticity. Upon expansion, a single kirigami ADM sheet can conformably wrap the implant regardless of the shape and size, forming a natural teardrop shape; contour cuts prescribe the topographical height and fractal cuts in the center ensures horizontal expandability and thus conformability. This kirigami ADM can provide support to the reconstructed breast in the desired regions, potentially offering optimal outcomes and patient‐specific reconstruction, while minimizing operative time and cost.

     
    more » « less