skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Young_Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism at cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatio-temporal dynamics of lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization-MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over a 15-day time period. When they were partially labeled after 5 d, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain and the entire molecule. The temporal change in the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their mass spectrometry images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues and the newly grown daughter fronds. Besides, two additional labeling experiments, (i) 13CO2 labeling and (ii) backward labeling of completely 50% D2O-labeled L. minor in H2O media, confirm the observations in forward labeling. Furthermore, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling using MSI to provide spatio-temporal details in lipid biosynthesis in plant development. 
    more » « less
  2. Abstract Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix‐assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On‐tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N‐trimethyl‐2‐(piperazin‐1‐yl)ethan‐1‐aminium iodide to chemically modify short‐chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization. 
    more » « less
  3. Abstract Derivatization reactions are commonly used in mass spectrometry to improve analyte signals, specifically by enhancing the ionization efficiency of those compounds. Vicinal diols are one group of biologically important compounds that have been commonly derivatized using boronic acid. In this study, a boronic acid with a tertiary amine was adapted for the derivatization of vicinal diol metabolites in B73 maize tissue cross‐sections for mass spectrometry imaging analysis. Using this method, dozens of vicinal diol metabolites were derivatized, effectively improving the signal of those metabolites. Many of these metabolites were tentatively assigned using high‐resolution accurate mass measurements. In addition, reaction interference and cross‐reactivity with various other functional groups were systematically studied to verify data interpretation. 
    more » « less