skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lefroy, Edward C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Long-term erosion rates in Tasmania, at the southern end of Australia's Great Dividing Range, are poorly known; yet, this knowledge is critical for making informed land-use decisions and improving the ecological health of coastal ecosystems. Here, we present quantitative, geologically relevant estimates of erosion rates for the George River basin, in northeast Tasmania, based on in situ-produced 10Be (10Bei) measured from stream sand at two trunk channel sites and seven tributaries (mean: 24.1±1.4 Mgkm-2yr-1; 1σ). These new10Bei-based erosion rates are strongly related to elevation, which appears to control mean annual precipitation and temperature,suggesting that elevation-dependent surface processes influence rates of erosion in northeast Tasmania. Erosion rates are not correlated with slopein contrast to erosion rates along the mainland portions of Australia's Great Dividing Range. We also extracted and measured meteoric 10Be(10Bem) from grain coatings of sand-sized stream sediment at each site, which we normalize to measured concentrations of reactive 9Beand use to estimate 10Bem-based denudation rates for the George River. 10Bem/9Bereac denudation ratesreplicate 10Bei erosion rates within a factor of 3 but are highly sensitive to the value of 9Be that is found in bedrock(9Beparent), which was unmeasured in this study. 10Bem/9Bereac denudation rates seem sensitive to recentmining, forestry, and agricultural land use, all of which resulted in widespread topsoil disturbance. Our findings suggest that10Bem/9Bereac denudation metrics will be most useful in drainage basins that are geologically homogeneous, where recentdisturbances to topsoil profiles are minimal, and where 9Beparent is well constrained. 
    more » « less