Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gender equity, providing for full participation of people of all genders in the oceanographic workforce, is an important goal for the continued success of the oceanographic enterprise. Here, we describe historical obstructions to gender equity; assess recent progress and the current status of gender equity in oceanography by examining quantitative measures of participation, achievement, and recognition; and review activities to improve gender equity. We find that women receive approximately half the oceanography PhDs in many parts of the world and are increasing in parity in earlier levels of academic employment. However, continued progress toward gender parity is needed, as reflected by metrics such as first-authored publications, funded grants, honors, and conference speaker invitations. Finally we make recommendations for the whole oceanographic community to continue to work together to create a culture where oceanographers of all genders can thrive, including eliminating harassment, reexamining selection and evaluation procedures, and removing structural inequities.more » « less
-
Geoscience is plagued with structural and systemic barriers that prevent people of historically excluded groups from fully participating in, contributing to, and accruing the benefits of geosciences. A change in the culture of our learning and working environments is required to dismantle barriers and promote belonging, accessibility, justice, equity, diversity, and inclusion in our field. Inspired by a session organized at the 2020 Ocean Sciences Meeting, the goal of this paper is to provide a consolidated summary of a few innovative and broadening participation initiatives that are being led by various stakeholders in academia (e.g., students, faculty, administrative leaders) at different institutional levels (e.g., universities, professional societies). The authors hope that the strategies outlined in this paper will inspire the coastal, ocean, and marine science community to take individual and collective actions that lead to a positive culture change.more » « less
-
Abstract We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI may contribute to water mass modification and mesoscale energy dissipation in flow systems throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL‐MOM6 in
z * and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom‐ and surface‐intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear‐driven mixing on the representation of water mass transformation. We find that in isopycnal and low‐resolutionz * simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI‐driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals toward a balanced state. The potential energy extracted from the large‐scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move toward resolving mesoscale eddies and fronts but not the submesoscale phenomena they host. -
Abstract We document the configuration and emergent simulation features from the Geophysical Fluid Dynamics Laboratory (GFDL) OM4.0 ocean/sea ice model. OM4 serves as the ocean/sea ice component for the GFDL climate and Earth system models. It is also used for climate science research and is contributing to the Coupled Model Intercomparison Project version 6 Ocean Model Intercomparison Project. The ocean component of OM4 uses version 6 of the Modular Ocean Model and the sea ice component uses version 2 of the Sea Ice Simulator, which have identical horizontal grid layouts (Arakawa C‐grid). We follow the Coordinated Ocean‐sea ice Reference Experiments protocol to assess simulation quality across a broad suite of climate‐relevant features. We present results from two versions differing by horizontal grid spacing and physical parameterizations: OM4p5 has nominal 0.5° spacing and includes mesoscale eddy parameterizations and OM4p25 has nominal 0.25° spacing with no mesoscale eddy parameterization. Modular Ocean Model version 6 makes use of a vertical Lagrangian‐remap algorithm that enables general vertical coordinates. We show that use of a hybrid depth‐isopycnal coordinate reduces the middepth ocean warming drift commonly found in pure
z *vertical coordinate ocean models. To test the need for the mesoscale eddy parameterization used in OM4p5, we examine the results from a simulation that removes the eddy parameterization. The water mass structure and model drift are physically degraded relative to OM4p5, thus supporting the key role for a mesoscale closure at this resolution.