skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lei Wu, Redwan Alqasemi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Persons with disabilities often rely on caregivers or family members to assist in their daily living activities. Robotic assistants can provide an alternative solution if intuitive user interfaces are designed for simple operations. Current humanrobot interfaces are still far from being able to operate in an intuitive way when used for complex activities of daily living (ADL). In this era of smartphones that are packed with sensors, such as accelerometers, gyroscopes and a precise touch screen, robot controls can be interfaced with smartphones to capture the user’s intended operation of the robot assistant. In this paper, we review the current popular human-robot interfaces, and we present three novel human-robot smartphone-based interfaces to operate a robotic arm for assisting persons with disabilities in their ADL tasks. Useful smartphone data, including 3 dimensional orientation and 2 dimensional touchscreen positions, are used as control variables to the robot motion in Cartesian teleoperation. In this paper, we present the three control interfaces, their implementation on a smartphone to control a robotic arm, and a comparison between the results on using the three interfaces for three different ADL tasks. The developed interfaces provide intuitiveness, low cost, and environmental adaptability. 
    more » « less