skip to main content


Search for: All records

Creators/Authors contains: "Leigh, Nathan W. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    It has been argued that heavy binaries composed of neutron stars (NSs) and millisecond pulsars (MSPs) can end up in the outskirts of star clusters via an interaction with a massive black hole (BH) binary expelling them from the core. We argue here, however, that this mechanism will rarely account for such observed objects. Only for primary masses ≲100 M⊙ and a narrow range of orbital separations should a BH–BH binary be both dynamically hard and produce a sufficiently low recoil velocity to retain the NS binary in the cluster. Hence, BH binaries are in general likely to eject NSs from clusters. We explore several alternative mechanisms that would cause NS/MSP binaries to be observed in the outskirts of their host clusters after a Hubble time. The most likely mechanism is a three-body interaction involving the NS/MSP binary and a normal star. We compare to Monte Carlo simulations of cluster evolution for the globular clusters NGC 6752 and 47 Tuc, and show that the models not only confirm that normal three-body interactions involving all stellar-mass objects are the dominant mechanism for putting NS/MSP binaries into the cluster outskirts, but also reproduce the observed NS/MSP binary radial distributions without needing to invoke the presence of a massive BH binary. Higher central densities and an episode of core collapse can broaden the radial distributions of NSs/MSPs and NS/MSP binaries due to three-body interactions, making these clusters more likely to host NSs in the cluster outskirts.

     
    more » « less
  2. ABSTRACT

    Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys.

     
    more » « less
  3. ABSTRACT

    Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whether a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

     
    more » « less
  4. ABSTRACT

    Exoplanetary observations reveal that the occurrence rate of hot Jupiters is correlated with star clustering. In star clusters, interactions between planetary systems and close flyby stars can significantly change the architecture of primordially coplanar, circular planetary systems. Flybys can impact hot Jupiter formation via activation of high-eccentricity excitation mechanisms such as the Zeipel–Lidov–Kozai (ZLK) effect and planet–planet scattering. Previous studies have shown that, for a two-planet system, close flybys, especially at high incidence angles, can efficiently activate the ZLK mechanism, thus triggering high-eccentricity tidal migration and ultimately form hot Jupiters. Here, we extend our previous study with a multiplanet (triple) system. We perform high-precision, high-accuracy few-body simulations of stellar flybys and subsequent planetary migration within the perturbed planetary systems using the code spacehub. Our simulations demonstrate that a single close flyby on a multiplanet system can activate secular chaos and ultimately lead to hot Jupiter formation via high-eccentricity migration. We find that the hot Jupiter formation rate per system increases with both the size of the planetary system and the mass of the outer planet, and we quantify the relative formation fractions for a range of parameters. Hot Jupiters formed via secular chaos are expected to be accompanied by massive companions with very long periods. Our study further shows that flyby-induced secular chaos is preferred in low-density clusters where multiplanet systems are more likely to survive, and that it contributes a significant fraction of hot Jupiter formation in star clusters compared to the flyby-induced ZLK mechanism.

     
    more » « less