skip to main content

Search for: All records

Creators/Authors contains: "Leigh, Nathan W. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whethermore »a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

    « less
  2. ABSTRACT

    Exoplanetary observations reveal that the occurrence rate of hot Jupiters is correlated with star clustering. In star clusters, interactions between planetary systems and close flyby stars can significantly change the architecture of primordially coplanar, circular planetary systems. Flybys can impact hot Jupiter formation via activation of high-eccentricity excitation mechanisms such as the Zeipel–Lidov–Kozai (ZLK) effect and planet–planet scattering. Previous studies have shown that, for a two-planet system, close flybys, especially at high incidence angles, can efficiently activate the ZLK mechanism, thus triggering high-eccentricity tidal migration and ultimately form hot Jupiters. Here, we extend our previous study with a multiplanet (triple) system. We perform high-precision, high-accuracy few-body simulations of stellar flybys and subsequent planetary migration within the perturbed planetary systems using the code spacehub. Our simulations demonstrate that a single close flyby on a multiplanet system can activate secular chaos and ultimately lead to hot Jupiter formation via high-eccentricity migration. We find that the hot Jupiter formation rate per system increases with both the size of the planetary system and the mass of the outer planet, and we quantify the relative formation fractions for a range of parameters. Hot Jupiters formed via secular chaos are expected to be accompanied bymore »massive companions with very long periods. Our study further shows that flyby-induced secular chaos is preferred in low-density clusters where multiplanet systems are more likely to survive, and that it contributes a significant fraction of hot Jupiter formation in star clusters compared to the flyby-induced ZLK mechanism.

    « less