skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leitner, David_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The thermal conductivity of many materials depends on temperature due to several factors, including variation of heat capacity with temperature, changes in vibrational dynamics with temperature, and change in volume with temperature. For proteins some, but not all, of these influences on the variation of thermal conductivity with temperature have been investigated in the past. In this study, we examine the influence of change in volume, and corresponding changes in vibrational dynamics, on the temperature dependence of the thermal conductivity. Using a measured value for the coefficient of thermal expansion and recently computed values for the Grüneisen parameter of proteins we find that the thermal conductivity increases with increasing temperature due to change in volume with temperature. We compare the impact of thermal expansion on the variation of the thermal conductivity with temperature found in this study with contributions of heat capacity and anharmonic coupling examined previously. Using values of thermal transport coefficients computed for proteins we also model heating of water in a protein solution following photoexcitation. 
    more » « less