skip to main content

Search for: All records

Creators/Authors contains: "Lenon, Amber"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2022
  2. ABSTRACT Two binary neutron star mergers, GW170817 and GW190425, have been detected by Advanced LIGO and Virgo. These signals were detected by matched-filter searches that assume that the star’s orbit has circularized by the time their gravitational-wave emission is observable. This suggests that their eccentricity is low, but full parameter estimation of their eccentricity has not yet been performed. We use gravitational-wave observations to measure the eccentricity of GW170817 and GW190425. We find that the eccentricity at a gravitational-wave frequency of 10 Hz is e ≤ 0.024 and e ≤ 0.048 for GW170817 and GW190425, respectively (90 per cent confidence). This is consistentmore »with the binaries being formed in the field, as such systems are expected to have circularized to e ≤ 10−4 by the time they reach the LIGO–Virgo band. Our constraint is a factor of 2 smaller that an estimate based on GW170817 being detected by searches that neglect eccentricity. However, we caution that we find significant prior dependence in our limits, suggesting that there is limited information in the signals. We note that other techniques used to constrain binary neutron star eccentricity without full parameter estimation may miss degeneracies in the waveform, and that for future signals, it will be important to perform full parameter estimation with accurate waveform templates.« less
  3. Doglioni, C. ; Kim, D. ; Stewart, G.A. ; Silvestris, L. ; Jackson, P. ; Kamleh, W. (Ed.)
    The DESGW group seeks to identify electromagnetic counterparts of gravitational wave events seen by the LIGO-VIRGO network, such as those expected from binary neutron star mergers or neutron star-black hole mergers. DESGW was active throughout the first two LIGO observing seasons, following up several binary black hole mergers and the first binary neutron star merger, GW170817. This work describes the modifications to the observing strategy generation and image processing pipeline between the second (ending in August 2017) and third (beginning in April 2019) LIGO observing seasons. The modifications include a more robust observing strategy generator, further parallelization of the imagemore »reduction software and difference imaging processing pipeline, data transfer streamlining, and a web page listing identified counterpart candidates that updates in real time. Taken together, the additional parallelization steps enable the identification of potential electromagnetic counterparts within fully calibrated search images in less than one hour, compared to the 3-5 hours it would typically take during the first two seasons. These performance improvements are critical to the entire EM follow-up community, as rapid identification (or rejection) of candidates enables detailed and rapid spectroscopic follow-up by multiple instruments, leading to more information about the environment immediately following such gravitational wave events.« less