skip to main content

Search for: All records

Creators/Authors contains: "Leonard, D. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2023
  2. Abstract We present a background model for dark matter searches using an array of NaI(Tl) crystals in the COSINE-100 experiment that is located in the Yangyang underground laboratory. The model includes background contributions from both internal and external sources, including cosmogenic radionuclides and surface $$^{210}$$ 210 Pb contamination. To build the model in the low energy region, with a threshold of 1 keV, we used a depth profile of $$^{210}$$ 210 Pb contamination in the surface of the NaI(Tl) crystals determined in a comparison between measured and simulated spectra. We also considered the effect of the energy scale errors propagated frommore »the statistical uncertainties and the nonlinear detector response at low energies. The 1.7 years COSINE-100 data taken between October 21, 2016 and July 18, 2018 were used for this analysis. Our Monte Carlo simulation provides a non-Gaussian peak around 50 keV originating from beta decays of bulk $$^{210}$$ 210 Pb in a good agreement with the measured background. This model estimates that the activities of bulk $$^{210}$$ 210 Pb and $$^{3}$$ 3 H are dominating the background rate that amounts to an average level of $$2.85\pm 0.15$$ 2.85 ± 0.15  counts/day/keV/kg in the energy region of (1–6) keV, using COSINE-100 data with a total exposure of 97.7 kg $$\cdot $$ · years.« less
    Free, publicly-accessible full text available September 1, 2022
  3. Abstract

    We report the identification of metastable isomeric states of$$^{228}$$228Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$\beta $$β-decay of$$^{228}$$228Ra, a component of the$$^{232}$$232Th decay chain, with$$\beta $$βQ-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$^{228}$$228Ra as well as the relative abundance of$$^{232}$$232Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.

  4. Free, publicly-accessible full text available December 1, 2022
  5. Abstract The nEXO neutrinoless double beta (0 νββ ) decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in 136 Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of 10 28 years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector.more »The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of 1.35 × 10 28 yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model.« less
    Free, publicly-accessible full text available December 3, 2022