skip to main content

Search for: All records

Creators/Authors contains: "Leonard, Douglas C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Type II supernovae (SNe) often exhibit a linear polarization, arising from free-electron scattering, with complicated optical signatures, both in the continuum and in lines. Focusing on the early nebular phase, at a SN age of 200 d, we conduct a systematic study of the polarization signatures associated with a 56 Ni “blob” that breaks spherical symmetry. Our ansatz, supported by nonlocal thermodynamic equilibrium radiative transfer calculations, is that the primary role of such a 56 Ni blob is to boost the local density of free electrons, which is otherwise reduced following recombination in Type II SN ejecta. Using 2D polarized radiation transfer modeling, we explore the influence of such an electron-density enhancement, varying its magnitude N e, fac , its velocity location V blob , and its spatial extent. For plausible N e, fac values of a few tens, a high-velocity blob can deliver a continuum polarization P cont of 0.5–1.0% at 200 d. Our simulations reproduce the analytic scalings for P cont , and in particular the linear growth with the blob radial optical depth. The most constraining information is, however, carried by polarized line photons. For a high V blob , the polarized spectrum appears as a replicamore »of the full spectrum, scaled down by a factor of 100–1000 (i.e., 1∕ P cont ) and redshifted by an amount V blob (1 − cos α los ), where α los is the line-of-sight angle. As V blob is reduced, the redshift decreases and the replication deteriorates. Lines whose formation region overlaps with the blob appear weaker and narrower in the polarized flux. Because of its dependence on inclination (∝ sin 2 α los ), the polarization preferentially reveals asymmetries in the plane perpendicular to the line-of-sight ( α los = 90 deg). This property also weakens the broadening of lines in the polarized flux. With the adequate choice of electron-density enhancement, some of these results may apply to asymmetric explosions in general or to the polarization signatures from newly formed dust in the outer ejecta.« less
  2. We present VLT–FORS spectropolarimetric observations of the type II supernova (SN) 2012aw taken at seven epochs during the photospheric phase, from 16 to 120 d after explosion. We corrected for interstellar polarization by postulating that the SN polarization is naught near the rest wavelength of the strongest lines – this is later confirmed by our modeling. SN 2012aw exhibits intrinsic polarization, with strong variations across lines, and with a magnitude that grows in the 7000 Å line-free region from 0.1% at 16 d up to 1.2% at 120 d. This behavior is qualitatively similar to observations gathered for other type II SNe. A suitable rotation of Stokes vectors places the bulk of the polarization in q , suggesting the ejecta of SN 2012aw is predominantly axisymmetric. Using an upgraded version of our 2D polarized radiative transfer code, we modeled the wavelength- and time-dependent polarization of SN 2012aw. The key observables may be explained by the presence of a confined region of enhanced 56 Ni at ~4000 km s −1 , which boosts the electron density in a cone having an opening angle of ~50 deg and an observer’s inclination of ~70 deg to the axis of symmetry. With this fixedmore »asymmetry in time, the observed evolution of the SN 2012aw polarization arises from the evolution of the ejecta optical depth, ionization, and the relative importance of multiple versus single scattering. However, the polarization signatures exhibit numerous degeneracies. Cancellation effects at early times imply that low polarization may even occur for ejecta with a large asymmetry. An axisymmetric ejecta with a latitudinal-dependent explosion energy can also yield similar polarization signatures as asymmetry in the 56 Ni distribution. In spite of these uncertainties, SN 2012aw provides additional evidence for the generic asymmetry of type II SN ejecta, of which VLT–FORS spectropolarimetric observations are a decisive and exquisite probe.« less
  3. Abstract We have modeled the velocity-resolved reverberation response of the H β broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the H β BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log 10 ( FWHM / σ ) , on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad H β emission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.
    Free, publicly-accessible full text available May 1, 2023
  4. ABSTRACT We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200 d after peak brightness. SN 2014ab was a luminous Type IIn SN (MV < −19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Pre-discovery upper limits constrain the time of explosion to within 200 d prior to discovery. While SN 2014ab declined by ∼1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa β emission line shows a profile very similar to that of H α, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. We are likely seeing emission from a photosphere that has only small deviation from circular symmetry in the plane normal to our line of sight, but with eithermore »large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be events with similar geometry viewed from different directions.« less
  5. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.