skip to main content

Search for: All records

Creators/Authors contains: "Leonard, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 7, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Abstract Interference patterns provide direct measurement of coherent propagation of matter waves in quantum systems. Superfluidity in Bose–Einstein condensates of excitons can enable long-range ballistic exciton propagation and can lead to emerging long-scale interference patterns. Indirect excitons (IXs) are formed by electrons and holes in separated layers. The theory predicts that the reduced IX recombination enables IX superfluid propagation over macroscopic distances. Here, we present dislocation-like phase singularities in interference patterns produced by condensate of IXs. We analyze how exciton vortices and skyrmions should appear in the interference experiments and show that the observed interference dislocations are not associated withmore »these phase defects. We show that the observed interference dislocations originate from the moiré effect in combined interference patterns of propagating condensate matter waves. The interference dislocations are formed by the IX matter waves ballistically propagating over macroscopic distances. The long-range ballistic IX propagation is the evidence for IX condensate superfluidity.« less
    Free, publicly-accessible full text available December 1, 2022
  4. This study determines the relationships between water flow and water quality in three types of channels in southern Florida, USA: Shark River Slough, Peace River, and Hillsboro Canal. Peace River most resembles a natural channel with floodplain connectivity, sinuosity, and uninhibited flow. Shark River Slough has a natural, shallow channel with sheet flow, while the Hillsboro Canal is the most modified channel due to dredging, straightening, and regulated flow. Hydrologic indices for each channel were estimated to characterize flow regimes and flow variability, while concentration–discharge (C–Q) relationships were determined to quantify the impact of flow regime on water quality. Themore »greatest variability in flow occurred at the Hillsboro Canal, followed by Peace River and Shark River Slough. Connectivity to floodplains and long durations of low and high flow pulses at Peace River and Shark River Slough contributed to the dilution of water quality constituent concentrations at higher flows. Conversely, the channelized characteristics of the Hillsboro Canal resulted in an enrichment of constituents, especially during high flows. This study suggests that C–Q relationships can be used in canal discharge management to prevent water quality degradation of sensitive downstream wetland and aquatic ecosystems.« less
  5. Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry andmore »microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.« less
  6. NMR-assisted crystallography—the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry—holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5′-phosphate–dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the locationmore »and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate β-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid–base catalytic residue βLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate C β and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.« less
    Free, publicly-accessible full text available January 11, 2023
  7. A predicted type-II staggered band alignment with an approximately 1.4 eV valence band offset at the ZnGeN2/GaN heterointerface has inspired novel band-engineered III-N/ZnGeN2 heterostructure-based device designs for applications in high performance optoelectronics. We report on the determination of the valence band offset between metalorganic chemical vapor deposition grown (ZnGe)1−xGa2xN2, for x = 0 and 0.06, and GaN using x-ray photoemission spectroscopy. The valence band of ZnGeN2 was found to lie 1.45–1.65 eV above that of GaN. This result agrees well with the value predicted by first-principles density functional theory calculations using the local density approximation for the potential profile andmore »quasiparticle self-consistent GW calculations of the band edge states relative to the potential. For (ZnGe)0.94Ga0.12N2 the value was determined to be 1.29 eV, ∼10%–20% lower than that of ZnGeN2. The experimental determination of the large band offset between ZnGeN2 and GaN provides promising alternative solutions to address challenges faced with pure III-nitride-based structures and devices.« less