skip to main content


Search for: All records

Creators/Authors contains: "Leonardo, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The South Atlantic Convergence Zone (SACZ) is an atmospheric system occurring in austral summer on the South America continent and sometimes extending over the adjacent South Atlantic. It is characterized by a persistent and very large, northwest-southeast-oriented, cloud band. Its presence over the ocean causes sea surface cooling that some past studies indicated as being produced by a decrease of incoming solar heat flux induced by the extensive cloud cover. Here we investigate ocean–atmosphere interaction processes in the Southwestern Atlantic Ocean (SWA) during SACZ oceanic episodes, as well as the resulting modulations occurring in the oceanic mixed layer and their possible feedbacks on the marine atmospheric boundary layer. Our main interests and novel results are on verifying how the oceanic SACZ acts on dynamic and thermodynamic mechanisms and contributes to the sea surface thermal balance in that region. In our oceanic SACZ episodes simulations we confirm an ocean surface cooling. Model results indicate that surface atmospheric circulation and the presence of an extensive cloud cover band over the SWA promote sea surface cooling via a combined effect of dynamic and thermodynamic mechanisms, which are of the same order of magnitude. The sea surface temperature (SST) decreases in regions underneath oceanic SACZ positions, near Southeast Brazilian coast, in the South Brazil Bight (SBB) and offshore. This cooling is the result of a complex combination of factors caused by the decrease of solar shortwave radiation reaching the sea surface and the reduction of horizontal heat advection in the Brazil Current (BC) region. The weakened southward BC and adjacent offshore region heat advection seems to be associated with the surface atmospheric circulation caused by oceanic SACZ episodes, which rotate the surface wind and strengthen cyclonic oceanic mesoscale eddy. Another singular feature found in this study is the presence of an atmospheric cyclonic vortex Southwest of the SACZ (CVSS), both at the surface and aloft at 850 hPa near 24°S and 45°W. The CVSS induces an SST decrease southwestward from the SACZ position by inducing divergent Ekman transport and consequent offshore upwelling. This shows that the dynamical effects of atmospheric surface circulation associated with the oceanic SACZ are not restricted only to the region underneath the cloud band, but that they extend southwestward where the CVSS presence supports the oceanic SACZ convective activity and concomitantly modifies the ocean dynamics. Therefore, the changes produced in the oceanic dynamics by these SACZ events may be important to many areas of scientific and applied climate research. For example, episodes of oceanic SACZ may influence the pathways of pollutants as well as fish larvae dispersion in the region. 
    more » « less
  2. Abstract

    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. A<sc>bstract</sc>

    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb1. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as thepTof on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available December 1, 2024
  5. Free, publicly-accessible full text available November 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  8. Free, publicly-accessible full text available November 1, 2024
  9. Free, publicly-accessible full text available November 1, 2024
  10. Free, publicly-accessible full text available October 1, 2024