skip to main content

Search for: All records

Creators/Authors contains: "Leopold, Devin R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant‐associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species ofCladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species ofCladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selectedCladosporiumspecies. We identified 17 species ofCladosporium; all the species reduced rust disease severity in our experiment.Cladosporiumphylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed thatCladosporiumendophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.

    more » « less
  2. Abstract

    Ecological communities typically contain more species when located within geologically older regions. This pattern is traditionally attributed to the long‐term accumulation of species in the regional species pool, with local species interactions playing a minor role. We provide evidence suggesting a more important role of local species interactions than generally assumed. We assembled 320 communities of root‐associated fungi under 80 species pools, varying species pool richness and the mean age of the sites from which the fungi were collected across a 4‐myr soil chronosequence. We found that local diversity increased more with increasing species pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating greater competitive equivalence among species. Our results suggest that older regions have higher local richness not simply because older pools are more speciose but also because species have evolved traits that allow them to locally co‐occur.

    more » « less
  3. Abstract Aim

    Foliar fungi – pathogens, endophytes, epiphytes – form taxonomically diverse communities that affect plant health and productivity. The composition of foliar fungal communities is variable at spatial scales both small (e.g. individual plants) and large (e.g. continents), yet few studies have attempted to tease apart spatial from climatic factors influencing these communities. Moreover, few studies have sampled in more than 1 year to gauge interannual variation in community structure.


    The Pacific Northwest of western North America.


    Foliar fungi associated with the deciduous treePopulus trichocarpa.


    In two consecutive years, we used DNA metabarcoding to characterize foliar fungal communities ofPopulus trichocarpaacross its geographic range, which encompasses a sharp climatic transition as it crosses the Cascade Mountain Range. We used multivariate analyses to (a) test for and differentiate spatial and environmental factors affecting community composition and (b) test for temporal variation in community composition across spatial and environmental gradients.


    In both study years, we found that foliar fungal community composition varied among sites and between regions (east vs. west of the Cascades). We found that climate explained more variation in community composition than geographic distance, although the majority of variation explained by each was shared. We also found that interannual variation in community composition depended on environmental context: communities located in the dry, eastern portion of the tree's geographic range varied more between study years than those located in the wet, western portion of the tree's range.

    Main conclusions

    Our results suggest that the environment plays a greater role in structuring foliar fungal communities than dispersal limitation.

    more » « less
  4. Abstract

    Habitat fragmentation resulting in habitat loss and increased isolation is a dominant driver of global species declines. Habitat isolation and connectivity vary across scales, and understanding how connectivity affects biodiversity can be challenging because the relevant scale depends on the taxa involved. A multiscale analysis can provide insight in biodiversity patterns across spatial scale when information on dispersal ability is not available, in particular for community‐level studies focusing on multiple taxa. In this study, we examine the relationship between arthropod diversity, patch area, and connectivity using a multiscale approach. We make use of a natural experiment on Hawai‘i Island, where historic volcanic activity has transformed contiguous native forests to lava matrix and discrete forest patches. This landscape of patches has persisted for 150 yr, and we selected 10,000 ha consisting of 863 patches to analyze landscape connectivity using a graph theory approach. We collected arthropod samples fromMetrosideros polymorpha tree canopies in 34 forest patches during multiple years. We analyzed the relationship of arthropod diversity with area, as well as with connectivity across increasing scales, or dispersal threshold distances. In contrast to well‐established ecological theory as well as prior work on birds and fungi in this system, we did not find support for a canonical species–area relationship. Next, we calculated connectivity across spatial scales and found lower Shannon diversity with higher connectivity at small scales, but no effect at increased dispersal threshold distances. We examined the landscape structure and found all habitat patches connected into three subnetworks at a 350 m threshold distance. All patches were connected at 700 m threshold distance, indicating structural dispersal limitation only at small scales. Our findings suggest that canopy arthropods are not dispersal limited at scales shown to impact both soil fungi and birds in this system. Instead, Hawaiian canopy arthropods may perceive the landscape as a connected area where discrete forest patches and the early‐successional matrix contribute resources that vary spatially with regard to habitat quality. We argue for the utility of multiscale approaches, and the importance of examining maintenance of biodiversity in fragmented landscapes that persist for hundreds of years.

    more » « less