skip to main content


Search for: All records

Creators/Authors contains: "Lepczyk, Christopher A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    A unique risk faced by nocturnally migrating birds is the disorienting influence of artificial light at night (ALAN). ALAN originates from anthropogenic activities that can generate other forms of environmental pollution, including the emission of fine particulate matter (PM2.5). PM2.5concentrations can display strong seasonal variation whose origin can be natural or anthropogenic. How this variation affects seasonal associations with ALAN and PM2.5for nocturnally migrating bird populations has not been explored.

    Location

    Western Hemisphere.

    Time Period

    2021

    Major Taxa Studied

    Nocturnally migrating passerine (NMP) bird species.

    Methods

    We combined monthly estimates of PM2.5and ALAN with weekly estimates of relative abundance for 164 NMP species derived using observations from eBird. We identified groups of species with similar associations with monthly PM2.5. We summarized their shared environmental, geographical, and ecological attributes.

    Results

    PM2.5was lowest in North America, especially at higher latitudes during the boreal winter. PM2.5was highest in the Amazon Basin, especially during the dry season (August–October). ALAN was highest within eastern North America, especially during the boreal winter. For NMP species, PM2.5associations reached their lowest levels during the breeding season (<10 μg/m3) and highest levels during the nonbreeding season, especially for long‐distance migrants that winter in Central and South America (~20 μg/m3). Species that migrate through Central America in the spring encountered similarly high PM2.5concentrations. ALAN associations reached their highest levels for species that migrate (~12 nW/cm2/sr) or spend the nonbreeding season (~15 nW/cm2/sr) in eastern North America.

    Main Conclusions

    We did not find evidence that the disorienting influence of ALAN enhances PM2.5exposure during stopover in the spring and autumn for NMP species. Rather, our findings suggest biomass burning in the Neotropics is exposing NMP species to consistently elevated PM2.5concentrations for an extended period of their annual life cycles.

     
    more » « less
  2. Sheard, Catherine (Ed.)
  3. Abstract

    Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.

     
    more » « less
  4. Abstract Aim

    Two important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds.

    Location

    Global.

    Time period

    1998–2018.

    Major taxa studied

    Nocturnally migrating birds.

    Methods

    We intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway.

    Results

    Correlations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways.

    Main conclusions

    The combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region.

     
    more » « less
  5. Abstract Aim

    Anthropogenic noise pollution (ANP) is a globally invasive phenomenon impacting natural systems, but most research has occurred at local scales with few species. We investigated continental‐scale breeding season associations with ANP for 322 bird species to test whether small‐scale predictions related to breeding habitat, migratory behaviour, body mass and vocal traits are consistent at broad spatial extents for an extensive group of species.

    Location

    Conterminous USA.

    Time period

    2004–2011.

    Major taxa studied

    North American breeding birds.

    Methods

    We calculated, for each species, the association between the breeding season and ANP, using spatially explicit estimates of ANP from the National Park Service and weekly estimates of probabilities of occurrence based on observations from the eBird citizen‐science database. We evaluated how the association of the breeding season for each species with ANP was related to expectations based on size, migratory behaviour and breeding habitat. For a subset of species, we used vocal trait data for song duration, pitch and complexity to evaluate hypotheses from the birdsong literature related to habitat complexity and sensitivity to ANP.

    Results

    Species that breed predominantly in anthropogenic environments were associated with twice the level of ANP (~7.4 dB) as species breeding in forested habitats (~3.2 dB). However, we did not find evidence to suggest that birds with higher‐pitched songs are more likely to be found in areas with higher levels of ANP. Residents and migratory species did not differ in associations with ANP, but songs were less complex among forest‐breeding species than non‐forest‐breeding species and increased in complexity with increasing ANP.

    Main conclusions

    Anthropogenic noise pollution is an important factor associated with breeding distributions of bird species in North America. Vocal traits could be useful to understand factors that affect sensitivity to ANP and to predict the potential impact of ANP, although future studies should aim to understand how and why patterns differ across spatial scales.

     
    more » « less
  6. Abstract

    SNAPSHOT USA is a multicontributor, long‐term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights (https://www.wildlifeinsights.org/), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22–5.9 arrays per 100,000 km2), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

     
    more » « less