Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
We present a study of new 7.7–11.3 μm data obtained with theJames WebbSpace Telescope Mid-InfraRed Instrument in the starburst galaxy M 82. In particular, we focus on the dependency of the integrated CO(1–0) line intensity on the MIRI-F770W and MIRI-F1130W filter intensities to investigate the correlation between H2content and the 7.7 and 11.3 μm features from polycyclic aromatic hydrocarbons (PAH) in M 82’s outflows. To perform our analysis, we identify CO clouds using the archival12CO(J = 1 − 0) NOEMA moment 0 map within 2 kpc from the center of M 82, with sizes ranging between ∼21 and 270 pc; then, we compute the CO-to-PAH relations for the 306 validated CO clouds. On average, the power-law slopes for the two relations in M 82 are lower than what is seen in local main-sequence spirals. In addition, there is a moderate correlation betweenICO(1 − 0) − I7.7 μm/I11.3 μmfor some of the CO cloud groups analyzed in this work. Our results suggest that the extreme conditions in M 82 translate into CO not tracing the full budget of molecular gas in smaller clouds, perhaps as a consequence of photoionization and/or emission suppression of CO molecules due to hard radiation fields from the central starburst.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT The low-J rotational transitions of 12CO are commonly used to trace the distribution of molecular gas in galaxies. Their ratios are sensitive to excitation and physical conditions in the molecular gas. Spatially resolved studies of CO ratios are still sparse and affected by flux calibration uncertainties, especially since most do not have high angular resolution or do not have short-spacing information and hence miss any diffuse emission. We compare the low-J CO ratios across the disc of two massive, star-forming spiral galaxies NGC 2903 and NGC 3627 to investigate whether and how local environments drive excitation variations at GMC scales. We use Atacama Large Millimeter Array (ALMA) observations of the three lowest-J CO transitions at a common angular resolution of 4 arcsec (190 pc). We measure median line ratios of $$R_{21}=0.67^{+0.13}_{-0.11}$$, $$R_{32}=0.33^{+0.09}_{-0.08}$$, and $$R_{31}=0.24^{+0.10}_{-0.09}$$ across the full disc of NGC 3627. We see clear CO line ratio variation across the galaxy consistent with changes in temperature and density of the molecular gas. In particular, towards the centre, R21, R32, and R31 increase by 35 per cent, 50 per cent, and 66 per cent, respectively, compared to their average disc values. The overall line ratio trends suggest that CO(3–2) is more sensitive to changes in the excitation conditions than the two lower J transitions. Furthermore, we find a similar radial R32 trend in NGC 2903, albeit a larger disc-wide average of $$\langle R_{32}\rangle =0.47^{+0.14}_{-0.08}$$. We conclude that the CO low-J line ratios vary across environments in such a way that they can trace changes in the molecular gas conditions, with the main driver being changes in temperature.more » « less
-
Nitrogen hydrides such as NH3 and N2H+ are widely used by Galactic observers to trace the cold dense regions of the interstellar medium. In external galaxies, because of limited sensitivity, HCN has become the most common tracer of dense gas over large parts of galaxies. We provide the first systematic measurements of N2H+ (1-0) across different environments of an external spiral galaxy, NGC 6946. We find a strong correlation (r > 0.98, p < 0.01) between the HCN (1-0) and N2H+ (1-0) intensities across the inner ∼8 kpc of the galaxy, at kiloparsec scales. This correlation is equally strong between the ratios N2H+ (1-0)/CO (1-0) and HCN (1-0)/CO (1-0), tracers of dense gas fractions (fdense). We measure an average intensity ratio of N2H+ (1-0)/HCN (1-0) = 0.15 ± 0.02 over our set of five IRAM-30m pointings. These trends are further supported by existing measurements for Galactic and extragalactic sources. This narrow distribution in the average ratio suggests that the observed systematic trends found in kiloparsec-scale extragalactic studies of fdense and the efficiency of dense gas (SFEdense) would not change if we employed N2H+ (1-0) as a more direct tracer of dense gas. At kiloparsec scales our results indicate that the HCN (1-0) emission can be used to predict the expected N2H+ (1-0) over those regions. Our results suggest that, even if HCN (1-0) and N2H+ (1-0) trace different density regimes within molecular clouds, subcloud differences average out at kiloparsec scales, yielding the two tracers proportional to each other.more » « less
-
We present new HCN and HCO+(J= 3–2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of ∼290–440 pc and resolve the innerRgal ≲ 0.6–1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO+, and CO and analyse the behaviour of a representative set of line ratios: HCN(3–2)/HCN(1–0), HCN(3–2)/HCO+(3–2), HCN(1–0)/CO(2–1), and HCN(3–2)/CO(2–1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO+observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density (Σstar), the intensity-weighted CO(2–1) (⟨ICO⟩), and the star formation rate surface density (ΣSFR). We find no apparent correlation with ΣSFR, but positive correlations with the other two parameters, which are stronger in the case of ⟨ICO⟩. The HCN/CO–⟨ICO⟩ relations show ≲0.3 dex galaxy-to-galaxy offsets, with HCN(3–2)/CO(2–1)–⟨ICO⟩ being ∼2 times steeper than HCN(1–0)/CO(2–1). In contrast, the HCN(3–2)/HCN(1–0)–⟨ICO⟩ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g., density or temperature).more » « less
-
null (Ed.)ABSTRACT Both the CO(2–1) and CO(1–0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2–1)-to-CO(1–0) ratio, R21. We compare new, high-quality CO(1–0) data from the IRAM 30-m EMIR MultiLine Probe of the ISM Regulating Galaxy Evolution survey to the latest available CO(2–1) maps from HERA CO-Line Extragalactic Survey, Physics at High Angular resolution in Nearby Galaxies-ALMA, and a new IRAM 30-m M51 Large Program. This allows us to measure R21 across the full star-forming disc of nine nearby, massive, star-forming spiral galaxies at 27 arcsec (∼1–2 kpc) resolution. We find an average R21 = 0.64 ± 0.09 when we take the luminosity-weighted mean of all individual galaxies. This result is consistent with the mean ratio for disc galaxies that we derive from single-pointing measurements in the literature, $$R_{\rm 21, lit}~=~0.59^{+0.18}_{-0.09}$$. The ratio shows weak radial variations compared to the point-to-point scatter in the data. In six out of nine targets, the central enhancement in R21 with respect to the galaxy-wide mean is of order of $${\sim}10{-}20{{\ \rm per\ cent}}$$. We estimate an azimuthal scatter of ∼20 per cent in R21 at fixed galactocentric radius but this measurement is limited by our comparatively coarse resolution of 1.5 kpc. We find mild correlations between R21 and carbon monoxide (CO) brightness temperature, infrared (IR) intensity, 70–160 µm ratio, and IR-to-CO ratio. All correlations indicate that R21 increases with gas surface density, star formation rate surface density, and the interstellar radiation field.more » « less
-
The complex physical, kinematic, and chemical properties of galaxy centres make them interesting environments to examine with molecular line emission. We present new 2 − 4″ (∼75 − 150 pc at 7.7 Mpc) observations at 2 and 3 mm covering the central 50″ (∼1.9 kpc) of the nearby double-barred spiral galaxy NGC 6946 obtained with the IRAM Plateau de Bure Interferometer. We detect spectral lines from ten molecules: CO, HCN, HCO + , HNC, CS, HC 3 N, N 2 H + , C 2 H, CH 3 OH, and H 2 CO. We complemented these with published 1 mm CO observations and 33 GHz continuum observations to explore the star formation rate surface density Σ SFR on 150 pc scales. In this paper, we analyse regions associated with the inner bar of NGC 6946 – the nuclear region (NUC), the northern (NBE), and southern inner bar end (SBE) and we focus on short-spacing corrected bulk (CO) and dense gas tracers (HCN, HCO + , and HNC). We find that HCO + correlates best with Σ SFR , but the dense gas fraction ( f dense ) and star formation efficiency of the dense gas (SFE dense ) fits show different behaviours than expected from large-scale disc observations. The SBE has a higher Σ SFR , f dense , and shocked gas fraction than the NBE. We examine line ratio diagnostics and find a higher CO(2−1)/CO(1−0) ratio towards NBE than for the NUC. Moreover, comparison with existing extragalactic datasets suggests that using the HCN/HNC ratio to probe kinetic temperatures is not suitable on kiloparsec and sub-kiloparsec scales in extragalactic regions. Lastly, our study shows that the HCO + /HCN ratio might not be a unique indicator to diagnose AGN activity in galaxies.more » « less
-
ABSTRACT The feedback from young stars (i.e. pre-supernova) is thought to play a crucial role in molecular cloud destruction. In this paper, we assess the feedback mechanisms acting within a sample of 5810 H ii regions identified from the PHANGS-MUSE survey of 19 nearby (<20 Mpc) star-forming, main-sequence spiral galaxies [log(M⋆/M⊙) = 9.4–11]. These optical spectroscopic maps are essential to constrain the physical properties of the H ii regions, which we use to investigate their internal pressure terms. We estimate the photoionized gas (Ptherm), direct radiation (Prad), and mechanical wind pressure (Pwind), which we compare to the confining pressure of their host environment (Pde). The H ii regions remain unresolved within our ∼50–100 pc resolution observations, so we place upper (Pmax) and lower (Pmin) limits on each of the pressures by using a minimum (i.e. clumpy structure) and maximum (i.e. smooth structure) size, respectively. We find that the Pmax measurements are broadly similar, and for Pmin the Ptherm is mildly dominant. We find that the majority of H ii regions are overpressured, Ptot/Pde = (Ptherm + Pwind + Prad)/Pde > 1, and expanding, yet there is a small sample of compact H ii regions with Ptot,max/Pde < 1 (∼1 per cent of the sample). These mostly reside in galaxy centres (Rgal < 1 kpc), or, specifically, environments of high gas surface density; log(Σgas/M⊙ pc−2) ∼ 2.5 (measured on kpc-scales). Lastly, we compare to a sample of literature measurements for Ptherm and Prad to investigate how dominant pressure term transitions over around 5 dex in spatial dynamic range and 10 dex in pressure.more » « less
An official website of the United States government
