Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neutral atomic gas (H I) effectively traces galactic dynamics across mid to large galactocentric radii. However, its limitations in observing small-scale changes within the central few kiloparsecs, coupled with the often observed H Ideficit in galactic centers, necessitates the use of molecular gas emission as a preferred tracer in these regions. Understanding the dynamics of both neutral atomic and molecular gas is crucial for a more complete understanding of how galaxies evolve, funnel gas from the outer disk into their central parts, and eventually form stars. In this work we aim to quantify the dynamics of both, the neutral atomic and molecular gas, in the nearby spiral galaxies NGC 1512, NGC 4535, and NGC 7496 using new MeerKAT H Iobservations together with ALMA CO (2-1) observations from the PHANGS collaboration. We use the analysis tool3DBarolo to fit tilted ring models to the H Iand CO observations. A combined approach of using the H Ito constrain the true disk orientation parameters before applying these to the CO datasets is tested. This paper sets expectations for the results of the upcoming high-resolution H Icoverage of many galaxies in the PHANGS-ALMA sample using MeerKAT or VLA, to establish a robust methodology for characterizing galaxy orientations and deriving dynamics from combing new H Iwith existing CO data.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insight into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2 Z⊙) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local Group L-Band Survey (LGLBS) enabled these detections due to its high spatial (15 pc for Hi emission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline to search for Hi absorption at high angular resolution and extract associated Hi emission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32±6 K, a mean CNM column density of 3.1×1020 cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking non-detections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hi absorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hi emission. We also analyze a nearby sightline with deep, narrow Hi self-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hα emissions suggests a close link between the colder, denser Hi phase and star formation in NGC 6822.more » « lessFree, publicly-accessible full text available July 22, 2025
-
Abstract We present the largest catalog to date of star clusters and compact associations in nearby galaxies. We have performed aV-band-selected census of clusters across the 38 spiral galaxies of the PHANGS–Hubble Space Telescope (HST) Treasury Survey, and measured integrated, aperture-corrected near-ultraviolet-U-B-V-Iphotometry. This work has resulted in uniform catalogs that contain ∼20,000 clusters and compact associations, which have passed human inspection and morphological classification, and a larger sample of ∼100,000 classified by neural network models. Here, we report on the observed properties of these samples, and demonstrate that tremendous insight can be gained from just the observed properties of clusters, even in the absence of their transformation into physical quantities. In particular, we show the utility of the UBVI color–color diagram, and the three principal features revealed by the PHANGS-HST cluster sample: the young cluster locus, the middle-age plume, and the old globular cluster clump. We present an atlas of maps of the 2D spatial distribution of clusters and compact associations in the context of the molecular clouds from PHANGS–Atacama Large Millimeter/submillimeter Array. We explore new ways of understanding this large data set in a multiscale context by bringing together once-separate techniques for the characterization of clusters (color–color diagrams and spatial distributions) and their parent galaxies (galaxy morphology and location relative to the galaxy main sequence). A companion paper presents the physical properties: ages, masses, and dust reddenings derived using improved spectral energy distribution fitting techniques.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors.more » « less
-
ABSTRACT Young stellar objects (YSOs) are the gold standard for tracing star formation in galaxies but have been unobservable beyond the Milky Way and Magellanic Clouds. But that all changed when the JWST was launched, which we use to identify YSOs in the Local Group galaxy M33, marking the first time that individual YSOs have been identified at these large distances. We present Mid-Infrared Instrument (MIRI) imaging mosaics at 5.6 and 21 $$\mu$$m that cover a significant portion of one of M33’s spiral arms that has existing panchromatic imaging from the Hubble Space Telescope and deep Atacama Large Millimeter/submillimeter Array CO measurements. Using these MIRI and Hubble Space Telescope images, we identify point sources using the new dolphot MIRI module. We identify 793 candidate YSOs from cuts based on colour, proximity to giant molecular clouds (GMCs), and visual inspection. Similar to Milky Way GMCs, we find that higher mass GMCs contain more YSOs and YSO emission, which further show YSOs identify star formation better than most tracers that cannot capture this relationship at cloud scales. We find evidence of enhanced star formation efficiency in the southern spiral arm by comparing the YSOs to the molecular gas mass.more » « less
-
Abstract We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M⋆/M⊙] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction ( ) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol, , and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.more » « less
-
Abstract M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.more » « less
-
Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M⊙), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows.more » « lessFree, publicly-accessible full text available May 28, 2025
-
Clusters, clouds, and correlations: relating young clusters to giant molecular clouds in M33 and M31ABSTRACT We use young clusters and giant molecular clouds (GMCs) in the galaxies M33 and M31 to constrain temporal and spatial scales in the star formation process. In M33, we compare the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) catalogue of 1214 clusters with ages measured via colour–magnitude diagram (CMD) fitting to 444 GMCs identified from a new 35 pc resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(2–1) survey. In M31, we compare the Panchromatic Hubble Andromeda Treasury (PHAT) catalogue of 1249 clusters to 251 GMCs measured from a Combined Array for Research in Millimeter-wave Astronomy (CARMA) 12CO(1–0) survey with 20 pc resolution. Through two-point correlation analysis, we find that young clusters have a high probability of being near other young clusters, but correlation between GMCs is suppressed by the cloud identification algorithm. By comparing the positions, we find that younger clusters are closer to GMCs than older clusters. Through cross-correlation analysis of the M33 cluster data, we find that clusters are statistically associated when they are ≤10 Myr old. Utilizing the high precision ages of the clusters, we find that clusters older than ≈18 Myr are uncorrelated with the molecular interstellar medium (ISM). Using the spatial coincidence of the youngest clusters and GMCs in M33, we estimate that clusters spend ≈4–6 Myr inside their parent GMC. Through similar analysis, we find that the GMCs in M33 have a total lifetime of ≈11–15 Myr. We also develop a drift model and show that the above correlations can be explained if the clusters in M33 have a 5–10 km s−1 velocity dispersion relative to the molecular ISM.more » « less
-
Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.more » « less