skip to main content

Search for: All records

Creators/Authors contains: "Leskovec, Jure"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An unhealthy diet is a major risk factor for chronic diseases including cardiovascular disease, type 2 diabetes, and cancer 1–4 . Limited access to healthy food options may contribute to unhealthy diets 5,6 . Studying diets is challenging, typically restricted to small sample sizes, single locations, and non-uniform design across studies, and has led to mixed results on the impact of the food environment 7–23 . Here we leverage smartphones to track diet health, operationalized through the self-reported consumption of fresh fruits and vegetables, fast food and soda, as well as body-mass index status in a country-wide observational studymore »of 1,164,926 U.S. participants (MyFitnessPal app users) and 2.3 billion food entries to study the independent contributions of fast food and grocery store access, income and education to diet health outcomes. This study constitutes the largest nationwide study examining the relationship between the food environment and diet to date. We find that higher access to grocery stores, lower access to fast food, higher income and college education are independently associated with higher consumption of fresh fruits and vegetables, lower consumption of fast food and soda, and lower likelihood of being affected by overweight and obesity. However, these associations vary significantly across zip codes with predominantly Black, Hispanic or white populations. For instance, high grocery store access has a significantly larger association with higher fruit and vegetable consumption in zip codes with predominantly Hispanic populations (7.4% difference) and Black populations (10.2% difference) in contrast to zip codes with predominantly white populations (1.7% difference). Policy targeted at improving food access, income and education may increase healthy eating, but intervention allocation may need to be optimized for specific subpopulations and locations.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract Most diseases disrupt multiple proteins, and drugs treat such diseases by restoring the functions of the disrupted proteins. How drugs restore these functions, however, is often unknown as a drug’s therapeutic effects are not limited to the proteins that the drug directly targets. Here, we develop the multiscale interactome, a powerful approach to explain disease treatment. We integrate disease-perturbed proteins, drug targets, and biological functions into a multiscale interactome network. We then develop a random walk-based method that captures how drug effects propagate through a hierarchy of biological functions and physical protein-protein interactions. On three key pharmacological tasks, themore »multiscale interactome predicts drug-disease treatment, identifies proteins and biological functions related to treatment, and predicts genes that alter a treatment’s efficacy and adverse reactions. Our results indicate that physical interactions between proteins alone cannot explain treatment since many drugs treat diseases by affecting the biological functions disrupted by the disease rather than directly targeting disease proteins or their regulators. We provide a general framework for explaining treatment, even when drugs seem unrelated to the diseases they are recommended for.« less
    Free, publicly-accessible full text available December 1, 2022
  3. Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speakermore »speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, M2P2 devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules -- an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test M2P2 on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP - we plan to release this dataset when the paper is published. M2P2 significantly outperforms 3 recent baselines on both datasets.« less
    Free, publicly-accessible full text available December 9, 2022
  4. Mobility restrictions have been a primary intervention for controlling the spread of COVID-19, but they also place a significant economic burden on individuals and businesses. To balance these competing demands, policymakers need analytical tools to assess the costs and benefits of different mobility reduction measures. In this paper, we present our work motivated by our interactions with the Virginia Department of Health on a decision-support tool that utilizes large-scale data and epidemiological modeling to quantify the impact of changes in mobility on infection rates. Our model captures the spread of COVID-19 by using a fine-grained, dynamic mobility network that encodesmore »the hourly movements of people from neighborhoods to individual places, with over 3 billion hourly edges. By perturbing the mobility network, we can simulate a wide variety of reopening plans and forecast their impact in terms of new infections and the loss in visits per sector. To deploy this model in practice, we built a robust computational infrastructure to support running millions of model realizations, and we worked with policymakers to develop an interactive dashboard that communicates our model's predictions for thousands of potential policies.« less
  5. Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. Here we propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructuredmore »metric space, COMET learns mappings of high-level concepts into semi-structured metric spaces, and effectively combines the outputs of independent concept learners. We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation on a novel dataset from a biological domain developed in our work. COMET significantly outperforms strong meta-learning baselines, achieving 6–15% relative improvement on the most challenging 1-shot learning tasks, while unlike existing methods providing interpretations behind the model’s predictions.« less
  6. Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. Here we propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructuredmore »metric space, COMET learns mappings of high-level concepts into semi-structured metric spaces, and effectively combines the outputs of independent concept learners. We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation on a novel dataset from a biological domain developed in our work. COMET significantly outperforms strong meta-learning baselines, achieving 6–15% relative improvement on the most challenging 1-shot learning tasks, while unlike existing methods providing interpretations behind the model’s predictions.« less
  7. Dimensions of human mood, behaviour and vital signs cycle over multiple timescales. However, it remains unclear which dimensions are most cyclical, and how daily, weekly, seasonal and menstrual cycles compare in magnitude. The menstrual cycle remains particularly understudied because, not being synchronized across the population, it will be averaged out unless menstrual cycles can be aligned before analysis. Here, we analyse 241 million observations from 3.3 million women across 109 countries, tracking 15 dimensions of mood, behaviour and vital signs using a women’s health mobile app. Out of the daily, weekly, seasonal and menstrual cycles, the menstrual cycle had themore »greatest magnitude for most of the measured dimensions of mood, behaviour and vital signs. Mood, vital signs and sexual behaviour vary most substantially over the course of the menstrual cycle, while sleep and exercise behaviour remain more constant. Menstrual cycle effects are directionally consistent across countries.« less
  8. Dynamic social interaction networks are an important abstraction to model time-stamped social interactions such as eye contact, speaking and listening between people. These networks typically contain informative while subtle patterns that reflect people’s social characters and relationship, and therefore attract the attentions of a lot of social scientists and computer scientists. Previous approaches on extracting those patterns primarily rely on sophisticated expert knowledge of psychology and social science, and the obtained features are often overly task-specific. More generic models based on representation learning of dynamic networks may be applied, but the unique properties of social interactions cause severe model mismatchmore »and degenerate the quality of the obtained representations. Here we fill this gap by proposing a novel framework, termed TEmporal network-DIffusion Convolutional networks (TEDIC), for generic representation learning on dynamic social interaction networks. We make TEDIC a good fit by designing two components: 1) Adopt diffusion of node attributes over a combination of the original network and its complement to capture long-hop interactive patterns embedded in the behaviors of people making or avoiding contact; 2) Leverage temporal convolution networks with hierarchical set-pooling operation to flexibly extract patterns from different-length interactions scattered over a long time span. The design also endows TEDIC with certain self-explaining power. We evaluate TEDIC over five real datasets for four different social character prediction tasks including deception detection, dominance identification, nervousness detection and community detection. TEDIC not only consistently outperforms previous SOTA’s, but also provides two important pieces of social insight. In addition, it exhibits favorable societal characteristics by remaining unbiased to people from different regions. Our project website is: http://snap.stanford.edu/tedic/.« less
  9. Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes’ identities duringmore »message passing. To embed a given node, IDGNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.« less