skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Leslie, Heather M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transdisciplinary collaboration offers great potential for meaningfully addressing complex problems related to climate change and social inequities. Communication shapes transdisciplinary collaboration in myriad ways, and interdisciplinary and rhetorical approaches to communication can help identify these influences as well as strategies to transform inequitable communication patterns. In this paper, we share results from an engaged and ethnographic research project focused on strategic communication in a large-scale transdisciplinary collaboration to develop environmental-DNA (eDNA) science for coastal resilience. In this context, definitions of eDNA, perspectives about communication, and constructions of audience and expertise shape the ways in which collaborators co-produce knowledge across disciplines and with diverse partners. Identifying relationships among strategic communication, knowledge co-production, and power enables the development of strategic collaborative practices, including asking questions as a means to identify and negotiate differences in definitions of eDNA and using participatory methods and anti-oppressive data management platforms for ethical praxis. 
    more » « less
  2. Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs.

     
    more » « less
  3. Abstract

    Most fishing is inherently size‐selective, in that fishers preferentially select a subset of the population for harvest based on economic incentives associated with different‐sized fish. Size‐selective fishing influences the targeted population and fishery performance in multiple ways, including changing the reproductive capacity of the target population and altering fishery yield. Understanding how social–ecological variability, including size selectivity, affects target species populations is critical for fisheries management to optimize the benefits of fisheries and the ecological impacts on target populations. In this study, we used yield per recruit, spawning stock biomass per recruit, and length‐based spawning potential ratio models to explore how a range of size selectivity scenarios affect fishery and population productivity for Mexican chocolate clams,Megapitaria squalida, in Loreto, Baja California Sur, Mexico. We found that alternate slot limits result in trade‐offs between fishery yield and reproductive productivity of the target population. A more restrictive slot limit reduced the proportion of the population available to harvest, resulting in higher reproductive capacity of the population, compared to a less restrictive slot limit, conditional on the rate of fishing mortality. In the long run, a more restrictive slot limit will likely lead to a higher number of recruits, larger stock size, and higher long‐term fishery yield relative to a less restrictive scenario. Our findings highlight that how people fish matters, perhaps as much as the quantity of fish harvested; size‐selective fishing that aligns with the life history of target populations and stakeholders’ goals is critical to sustaining fisheries and the valuable food and livelihoods they provide.

     
    more » « less