skip to main content


Search for: All records

Creators/Authors contains: "Lessner, Emily J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Highly branched dendritic structures are common in nature and often difficult to quantify and therefore compare. Cranial neurovascular canals, examples of such structures, are osteological correlates for somatosensory systems and have been explored only qualitatively. Adaptations of traditional stream‐ordering methods are applied to representative structures derived from computed tomography‐scan data. Applying these methods to crocodylian taxa, this clade demonstrates a shared branching pattern and exemplifies the comparative utility of these methods. Additionally, this pattern corresponds with current understanding of crocodylian sensory abilities and behaviors. The method is applicable to many taxa and anatomical structures and provides evidence for morphology‐based hypotheses of sensory and physiological evolution.

     
    more » « less
  2. Abstract

    Cranial nerves are key features of the nervous system and vertebrate body plan. However, little is known about the anatomical relationships and ontogeny of cranial nerves in crocodylians and other reptiles, hampering understanding of adaptations, evolution, and development of special senses, somatosensation, and motor control of cranial organs. Here we share three dimensional (3D) models an of the cranial nerves and cranial nerve targets of embryonic, juvenile, and adult American Alligators (Alligator mississippiensis) derived from iodine‐contrast CT imaging, for the first time, exploring anatomical patterns of cranial nerves across ontogeny. These data reveal the tradeoffs of using contrast‐enhanced CT data as well as patterns in growth and development of the alligator cranial nervous system. Though contrast‐enhanced CT scanning allows for reconstruction of numerous tissue types in a nondestructive manner, it is still limited by size and resolution. The position of alligator cranial nerves varies little with respect to other cranial structures yet grow at different rates as the skull elongates. These data constrain timing of trigeminal and sympathetic ganglion fusion and reveal morphometric differences in nerve size and path during growth. As demonstrated by these data, alligator cranial nerve morphology is useful in understanding patterns of neurological diversity and distribution, evolution of sensory and muscular innervation, and developmental homology of cranial regions, which in turn, lead to inferences of physiology and behavior.

     
    more » « less
  3. Abstract

    New imaging and biomechanical approaches have heralded a renaissance in our understanding of crocodylian anatomy. Here, we review a series of approaches in the preparation, imaging, and functional analysis of the jaw muscles of crocodylians. Iodine‐contrast microCT approaches are enabling new insights into the anatomy of muscles, nerves, and other soft tissues of embryonic as well as adult specimens of alligators. These imaging data and other muscle modeling methods offer increased accuracy of muscle sizes and attachments without destructive methods like dissection. 3D modeling approaches and imaging data together now enable us to see and reconstruct 3D muscle architecture which then allows us to estimate 3D muscle resultants, but also measurements of pennation in ways not seen before. These methods have already revealed new information on the ontogeny, diversity, and function of jaw muscles and the heads of alligators and other crocodylians. Such approaches will lead to enhanced and accurate analyses of form, function, and evolution of crocodylians, their fossil ancestors and vertebrates in general.

     
    more » « less
  4. ABSTRACT

    Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal‐nerve‐mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages. We explore mandibular symphysis anatomy of an ontogenetic series ofAlligator mississippiensisusing imaging, histology, and whole mount methods. Complex sutural ligaments emanating about a midline‐fused Meckel's cartilage bridge the symphysis. These tissues organize during days 37–42 ofin ovodevelopment. However, interdigitations do not manifest until after hatching. These soft tissues leave a hub and spoke‐like bony morphology of the symphyseal plate, which never fuses. Interdigitation morphology varies within the symphysis suggesting differential loading about the joint. Neurovascular canals extend throughout the mandibles to alveoli, integument, and bone adjacent to the symphysis. These features suggest theAlligatormandibular symphysis offers compliance in an otherwise rigid skull. We hypothesize a fused Meckel's cartilage offers stiffness in hatchling mandibles prior to the development of organized sutural ligaments and mineralized bone while offering a scaffold for somatic growth. The porosity of the dentaries due to neurovascular tissues likely allows transmission of sensory and proprioceptive information from the surroundings and the loaded symphysis. Anat Rec, 302:1696–1708, 2019. © 2019 American Association for Anatomy

     
    more » « less
  5. ABSTRACT

    Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life‐history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least‐inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260‐million‐year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. ‘juvenile’, ‘mature’) and provide routes for better clarity and cross‐study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method‐specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, ‘Ontogenetic Assessment’, be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well‐represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well‐constrained, empirically tested methods.

     
    more » « less