Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the results of a stellar population analysis of 72 Lyα-emitting galaxies (LAEs) in GOODS-N at 1.9 <z< 3.5 spectroscopically identified by the Hobby−Eberly Telescope Dark Energy Experiment (HETDEX). We provide a method for connecting emission-line detections from the blind spectroscopic survey to imaging counterparts, a crucial tool needed as HETDEX builds a massive database of ∼1 million Lyαdetections. Using photometric data spanning as many as 11 filters covering 0.4 <λ(μm) < 4.5 from the Hubble Space Telescope and Spitzer Space Telescope, we study the objects’ global properties and explore which properties impact the strength of Lyαemission. We measure a median stellar mass of and conclude that the physical properties of HETDEX spectroscopically selected LAEs are comparable to LAEs selected by previous deep narrowband studies. We find that stellar mass and star formation rate correlate strongly with the Lyαequivalent width. We then use a known sample ofz> 7 LAEs to perform a protostudy of predicting Lyαemission from galaxies in the epoch of reionization, finding agreement at the 1σlevel between prediction and observation for the majority of strong emitters.more » « less
-
ABSTRACT The combination of the MOSDEF and KBSS-MOSFIRE surveys represents the largest joint investment of Keck/MOSFIRE time to date, with ∼3000 galaxies at 1.4 ≲ z ≲ 3.8, roughly half of which are at z ∼ 2. MOSDEF is photometric- and spectroscopic-redshift selected with a rest-optical magnitude limit, while KBSS-MOSFIRE is primarily selected based on rest-UV colours and a rest-UV magnitude limit. Analysing both surveys in a uniform manner with consistent spectral-energy-distribution (SED) models, we find that the MOSDEF z ∼ 2 targeted sample has higher median M* and redder rest U−V colour than the KBSS-MOSFIRE z ∼ 2 targeted sample, and smaller median SED-based SFR and sSFR (SFR(SED) and sSFR(SED)). Specifically, MOSDEF targeted a larger population of red galaxies with U−V and V−J ≥1.25, while KBSS-MOSFIRE contains more young galaxies with intense star formation. Despite these differences in the z ∼ 2 targeted samples, the subsets of the surveys with multiple emission lines detected and analysed in previous work are much more similar. All median host-galaxy properties with the exception of stellar population age – i.e. M*, SFR(SED), sSFR(SED), AV, and UVJ colours – agree within the uncertainties. Additionally, when uniform emission-line fitting and stellar Balmer absorption correction techniques are applied, there is no significant offset between both samples in the [O iii]λ5008/H β versus [N ii]λ6585/H α diagnostic diagram, in contrast to previously reported discrepancies. We can now combine the MOSDEF and KBSS-MOSFIRE surveys to form the largest z ∼ 2 sample with moderate-resolution rest-optical spectra and construct the fundamental scaling relations of star-forming galaxies during this important epoch.more » « less
-
Abstract We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M⊙) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M⊙∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 M⊙yr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z⊙∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object.more » « less