Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self‐discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFxcathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFxdischarge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, cross‐sectional focused ion beam, high‐resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFxlayers, and carbon with lower sp2content similar to the hard‐carbon structure are the products during discharge. This work deepens the understanding of CFxas a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
