skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Levey, J_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water resource management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill, Nash–Sutcliffe efficiency (NSE) coefficient, has been analyzed toward understanding the forecast accuracy. We decompose the NSE of S2S precipitation forecast into its three components—correlation, conditional bias, and unconditional bias—by four seasons, three lead times (1–12, 1–22, and 1–32 days), and three models, European Centre of Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model, and Environment and Climate Change Canada (ECCC), over the conterminous United States (CONUS). Application of a dry threshold, removal of grid cells with seasonal climatological precipitation means below 0.01 in. per day, is important as the NSE and correlations are lower across all seasons after masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists, and forecast skill was better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during the fall and winter months. However, ECCC and NCEP CFS performed better for the forecast issued during the spring months and for areas further from the coast. Postprocessing using simple model output statistics could reduce both unconditional and conditional biases to zero, thereby offering better skill for regimes with high correlation. Our decomposition results show that efforts should focus on improving model parameterization and initialization schemes for climate regimes with low correlation.

     
    more » « less