skip to main content

Search for: All records

Creators/Authors contains: "Levin, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use the method of characteristic sets with respect to two term orderings to prove the existence and obtain a method of computation of a bivariate dimension polynomial associated with a non-reflexive difference-differential ideal in the algebra of difference-differential polynomials with several basic derivations and one translation. As a consequence, we obtain a new proof and a method of computation of the dimension polynomial of a non-reflexive prime difference ideal in the algebra of difference polynomials over an ordinary difference field. We also discuss applications of our results to systems of algebraic difference-differential equations.
  2. Multivariate dimension polynomials associated with finitely generated differential and difference field extensions arise as natural generalizations of the univariate differential and difference dimension polynomials. It turns out, however, that they carry more information about the corresponding extensions than their univariate counterparts. We extend the known results on multivariate dimension polynomials to the case of difference-differential field extensions with arbitrary partitions of sets of basic operators. We also describe some properties of multivariate dimension polynomials and their invariants.
  3. We present a difference algebraic technique for the evaluation of the Einstein's strength of quasi-linear partial difference equations and some systems of such equations. Our approach is based on the properties of difference dimension polynomials that express the Einstein's strength and on the characteristic set method for computing such polynomials. The obtained results are applied to the comparative analysis of difference schemes for some chemical reaction-diffusion equations.
  4. We consider Hilbert-type functions associated with finitely generated inversive difference field extensions and systems of algebraic difference equations in the case when the translations are assigned positive integer weights. We prove that such functions are quasi-polynomials that can be represented as alternating sums of Ehrhart quasi-polynomials of rational conic polytopes. In particular, we generalize the author's results on difference dimension polynomials and their invariants to the case of inversive difference fields with weighted basic automorphisms.
  5. Free, publicly-accessible full text available March 1, 2023
  6. Free, publicly-accessible full text available January 1, 2023
  7. A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with anmore »earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.« less
    Free, publicly-accessible full text available November 1, 2022
  8. Free, publicly-accessible full text available September 1, 2022
  9. Free, publicly-accessible full text available September 1, 2022
  10. Free, publicly-accessible full text available August 1, 2022