skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Levitan, Sarah Ita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we introduce Story2MIDI, a sequence-to-sequence Transformer-based model for generating emotion-aligned music from a given piece of text. To develop this model, we construct the Story2MIDI dataset by merging existing datasets for sentiment analysis from text and emotion classification in music. The resulting dataset contains pairs of text blurbs and music pieces that evoke the same emotions in the reader or listener. Despite the small scale of our dataset and limited computational resources, our results indicate that our model effectively learns emotion-relevant features in music and incorporates them into its generation process, producing samples with diverse emotional responses. We evaluate the generated outputs using objective musical metrics and a human listening study, confirming the model’s ability to capture intended emotional cues. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026