skip to main content

Search for: All records

Creators/Authors contains: "Levy Zamora, Misti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Low-cost sensors are often co-located with reference instruments to assess their performance and establish calibration equations, but limiteddiscussion has focused on whether the duration of this calibration period can be optimized. We placed a multipollutant monitor that containedsensors that measured particulate matter smaller than 2.5 µm (PM2.5), carbon monoxide (CO), nitrogendioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for 1 year. We developed calibration equationsusing randomly selected co-location subsets spanning 1 to 180 consecutive days out of the 1-year period and compared the potential root-mean-square error (RMSE) and Pearson correlation coefficient (r) values. The co-located calibration period required to obtain consistent results varied bysensor type, and several factors increased the co-location duration required for accurate calibration, including the response of a sensor toenvironmental factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. Using measurements fromBaltimore, MD, where a broad range of environmental conditions may be observed over a given year, we found diminishing improvements in the medianRMSE for calibration periods longer than about 6 weeks for all the sensors. The best performing calibration periods were the ones that contained arange of environmental conditions similar to those encountered during the evaluation period (i.e., all other days of the year not used in thecalibration). With optimal, varying conditions it was possible to obtain an accurate calibration in as little as 1 week for all sensors, suggestingthat co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of thedesired measurement setting. 
    more » « less
  2. The emergence of low-cost air quality sensors as viable tools for the monitoring of air quality at population and individual levels necessitates the evaluation of these instruments. The Flow air quality tracker, a product of Plume Labs, is one such sensor. To evaluate these sensors, we assessed 34 of them in a controlled laboratory setting by exposing them to PM10 and PM2.5 and compared the response with Plantower A003 measurements. The overall coefficient of determination (R2) of measured PM2.5 was 0.76 and of PM10 it was 0.73, but the Flows’ accuracy improved after each introduction of incense. Overall, these findings suggest that the Flow can be a useful air quality monitoring tool in air pollution areas with higher concentrations, when incorporated into other monitoring frameworks and when used in aggregate. The broader environmental implications of this work are that it is possible for individuals and groups to monitor their individual exposure to particulate matter pollution. 
    more » « less