skip to main content

Search for: All records

Creators/Authors contains: "Lewis, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Enacting STEM education reform is a complex task and there are a variety of approaches that might be selected by change agents. When working on an institutional change project to impact multiple parts of the STEM education system, teams of change agents may select multiple strategies and tactics to enact at one time and over multiple years of a project. However, the literature lacks studies which document and analyze strategies and tactics used by change project teams in a way that can be useful for other change agents. The current study seeks to fill this gap by investigating National Science Foundation-funded change initiatives at three public research universities focused on encouraging the adoption of evidenced-based instructional practices by STEM faculty in order to understand the strategies used within and across projects.


    Qualitative framework analysis using the lens of the Henderson et al. (Journal of Research in Science Teaching 48(8): 952–984, 2011. Four Categories of Change Strategies Model showed that institutional projects enact a wide range of tactics that span the four strategies represented in the four categories of the model both across institutions and within each institution. The analysis documents a number of change tactics not previously described by the model and offers expanded definitions of the change processes that operate within each category in the context of institutional change projects.


    This descriptive work advances our understanding of the breadth and depth of actions taken by institutional change initiatives and provides insights into types of variations that might be observed based on different institutional contexts. The current analysis both affirms the value of the original model and identifies expanded ways to think about the four categories within the context of institutional change projects.

    more » « less
  2. Free, publicly-accessible full text available February 1, 2024
  3. Abstract

    Numerous studies have documented the negative effects of neonicotinoids on bees; it remains crucial to examine how neonicotinoids affect other non‐target nectar‐feeding insects, such as the monarch butterfly,Danaus plexippus.

    Wildflowers growing near agricultural areas can be contaminated with neonicotinoids that affect survival or cause sublethal changes to behaviours of nectar‐feeding insects. Nectar residues of imidacloprid and clothianidin found in milkweeds and wildflowers adjacent to agricultural field range from 0 to 72.8 ng/mL.

    At field‐relevant doses, two neonicotinoids (imidacloprid and clothianidin) were studied for their effects on adult monarch survival, reproduction, flight and behaviour. First, we fed adult monarchs artificial nectar solutions ranging from 15 to 386 ng/mL of imidacloprid and 19 to 531 ng/mL of clothianidin. Neonicotinoid ingestion slightly reduced monarch reproduction but had no significant effects on survival, weight change, or activity levels.

    Second, we fed monarchs higher clothianidin doses (909 and 4030 ng/mL), that exceed field‐relevant levels by 22 and 99 times. These higher doses reduced monarch nectar consumption, survival, flight performance and reaction time in response to a drop test.

    Results show that adult monarchs tolerate field‐relevant doses as high as 54 ng/mL for imidacloprid and 75 ng/mL for clothianidin, with minimal lethal or sub‐lethal effects until much higher doses are supplied. We conclude that adult monarchs are more tolerant of ingested clothianidin and imidacloprid than indicated by previous research.

    more » « less
  4. Brunet, Johanne (Ed.)
    Abstract Honey bees (Apis mellifera L. Hymeoptera: Apidae) use hydrogen peroxide (synthesized by excreted glucose oxidase) as an important component of social immunity. However, both tolerance of hydrogen peroxide and the production of glucose oxidase in honey is costly. Hydrogen peroxide may also be encountered by honey bees at high concentrations in nectar while foraging, however despite its presence both in their foraged and stored foods, it is unclear if and how bees monitor concentrations of, and their behavioral responses to, hydrogen peroxide. The costs of glucose oxidase production and the presence of hydrogen peroxide in both nectar and honey suggest hypotheses that honey bees preferentially forage on hydrogen peroxide supplemented feed syrups at certain concentrations, and avoid feed syrups supplemented with hydrogen peroxide at concentrations above some tolerance threshold. We test these hypotheses and find that, counter to expectation, honey bees avoid glucose solutions supplemented with field-relevant hydrogen peroxide concentrations and either avoid or don’t differentiate supplemented sucrose solutions when given choice assays. This is despite honey bees showing high tolerance for hydrogen peroxide in feed solutions, with no elevated mortality until concentrations of hydrogen peroxide exceed 1% (v/v) in solution, with survival apparent even at concentrations up to 10%. The behavioral interaction of honey bees with hydrogen peroxide during both within-colony synthesis in honey and when foraging on nectar therefore likely relies on interactions with other indicator molecules, and maybe constrained evolutionarily in its plasticity, representing a constitutive immune mechanism. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. One longstanding complication with Earth data discovery involves understanding a user’s search intent from the input query. Most of the geospatial data portals use keyword-based match to search data. Little attention has focused on the spatial and temporal information from a query or understanding the query with ontology. No research in the geospatial domain has investigated user queries in a systematic way. Here, we propose a query understanding framework and apply it to fill the gap by better interpreting a user’s search intent for Earth data search engines and adopting knowledge that was mined from metadata and user query logs. The proposed query understanding tool contains four components: spatial and temporal parsing; concept recognition; Named Entity Recognition (NER); and, semantic query expansion. Spatial and temporal parsing detects the spatial bounding box and temporal range from a query. Concept recognition isolates clauses from free text and provides the search engine phrases instead of a list of words. Name entity recognition detects entities from the query, which inform the search engine to query the entities detected. The semantic query expansion module expands the original query by adding synonyms and acronyms to phrases in the query that was discovered from Web usage data and metadata. The four modules interact to parse a user’s query from multiple perspectives, with the goal of understanding the consumer’s quest intent for data. As a proof-of-concept, the framework is applied to oceanographic data discovery. It is demonstrated that the proposed framework accurately captures a user’s intent. 
    more » « less
  8. We enumerate factorizations of a Coxeter element into arbitrary factors in the complex reflection groups G(d, 1, n) (the wreath product of the symmetric group with a cyclic group) and its subgroup G(d, d, n), applying combinatorial and algebraic methods, respectively. After a change of basis, the coefficients that appear are the same as those that appear in the corresponding enumeration in the symmetric group. 
    more » « less