skip to main content

Search for: All records

Creators/Authors contains: "Lewis, Johnnye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Meteorological (MET) data is a crucial input for environmental exposure models. While modeling exposure potential using geospatial technology is a common practice, existing studies infrequently evaluate the impact of input MET data on the level of uncertainty on output results. The objective of this study is to determine the effect of various MET data sources on the potential exposure susceptibility predictions. Three sources of wind data are compared: The North American Regional Reanalysis (NARR) database, meteorological aerodrome reports (METARs) from regional airports, and data from local MET weather stations. These data sources are used as inputs into a machine learning (ML) driven GIS Multi-Criteria Decision Analysis (GIS-MCDA) geospatial model to predict potential exposure to abandoned uranium mine sites in the Navajo Nation. Results indicate significant variations in results derived from different wind data sources. After validating the results from each source using the National Uranium Resource Evaluation (NURE) database in a geographically weighted regression (GWR), METARs data combined with the local MET weather station data showed the highest accuracy, with an average R 2 of 0.74. We conclude that local direct measurement-based data (METARs and MET data) produce a more accurate prediction than the other sources evaluated in the study. This study has the potential to inform future data collection methods, leading to more accurate predictions and better-informed policy decisions surrounding environmental exposure susceptibility and risk assessment. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024