skip to main content

Search for: All records

Creators/Authors contains: "Lewis, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fully internal and motional state controlled and individually manipulable polar molecules are desirable for many quantum science applications leveraging the rich state space and intrinsic interactions of molecules. While prior efforts at assembling molecules from their constituent atoms individually trapped in optical tweezers achieved such a goal for exactly one molecule (Zhang J T et al 2020 Phys. Rev. Lett. 124 253401; Cairncross W B et al 2021 Phys. Rev. Lett. 126 123402; He X et al 2020 Science 370 331–5), here we extend the technique to an array of five molecules, unlocking the ability to study molecular interactions. We detail the technical challenges and solutions inherent in scaling this system up. With parallel preparation and control of multiple molecules in hand, this platform now serves as a starting point to harness the vast resources and long-range dipolar interactions of molecules.
    Free, publicly-accessible full text available May 9, 2023
  2. Free, publicly-accessible full text available February 1, 2023
  3. null (Ed.)