skip to main content

Search for: All records

Creators/Authors contains: "Lewis, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class—the degree to which feedstocks are derived from cargo and in situ resources—and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Cook, S. ; Katz, B. ; Moore-Russo, D. (Ed.)
    Professional development (PD) is often recommended to equip faculty to serve racially minoritized students through instruction. However, limited work has examined equity-oriented PD for mathematics faculty, who often hold views of instruction as race-neutral. This contributed report explores the influence of a two-year PD for faculty in a mathematics department engaged in equity-oriented reform at a Hispanic-Serving Institution. We present two cases of white faculty members who demonstrated a limited ability to interrogate their white racial identities in relation to their instructional impact, despite their engagement in a sustained PD designed to promote racial equity. Implications are provided for equity-oriented PD for mathematics faculty. 
    more » « less
  5. Free, publicly-accessible full text available September 1, 2024

    Molecular hydrogen allows cooling in primordial gas, facilitating its collapse into Population III stars within primordial halos. Lyman–Werner (LW) radiation from these stars can escape the halo and delay further star formation by destroying H2 in other halos. As cosmological simulations show that increasing the background LW field strength increases the average halo mass required for star formation, we perform follow-up simulations of selected halos to investigate the knock-on effects this has on the Population III IMF. We follow 5 halos for each of the J21  = 0, 0.01, and 0.1 LW field strengths, resolving the pre-stellar core density of 10−6 g cm−3 (1018 cm−3) before inserting sink particles and following the fragmentation behaviour for hundreds of years further. We find that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the ∼10−2 pc molecular core, which is not correlated to the initial mass of the halo. As such, the IMFs for masses above the brown dwarf limit show little dependence on the LW strength, although they do show variance in the number of low-mass clumps formed. As the range of background LW field strengths tested here covers the most likely values from literature, we conclude that the IMF for so-called Pop III.2 stars is not significantly different from the initial population of Pop III.1 stars. The primordial IMF therefore likely remains unchanged until the formation of the next generation of Population II stars.

    more » « less
  7. Abstract

    Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$73Zn(n,$$\gamma $$γ)$$^{74}\hbox {Zn}$$74Znwas calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$γ-ray strength function ($$\gamma \hbox {SF}$$γSF) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$γSF, accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important.

    more » « less