skip to main content


Search for: All records

Creators/Authors contains: "Lewis-Swan, R. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Thomas Pattard ; Jan Michael Rost ; Franco Dalfovo (Ed.)
    We experimentally demonstrate that well-designed driven lattices are versatile tools to simultaneously tune multiple key parameters (spin-dependent interactions, spinor phase, and quadratic Zeeman energy) for manipulating phase diagrams of spinor gases with negligible heating and atom losses. This opens avenues for studying engineered Hamiltonians and dynamical phase transitions. Modulation-induced harmonics generate progressively narrower separatrices at driving-frequency-determined higher magnetic-field strengths. This technique enables exploration of multiple, previously inaccessible parameter regimes of spinor dynamics (notably high magnetic-field strengths, tunable spinor phase, and individually tunable spin-preserving and spin-changing collisions) and widens the range of cold-atom applications, e.g., in quantum sensing and studies of nonequilibrium dynamics. 
    more » « less
    Free, publicly-accessible full text available April 10, 2025
  3. Thomas Pattard ; Jan Michael Rost ; Franco Dalfovo (Ed.)
    We present an experimental realization of dynamic self-trapping and nonexponential tunneling in a multistate system consisting of ultracold sodium spinor gases confined in moving optical lattices. Taking advantage of the fact that the tunneling process between different momentum states in the sodium spinor system is resolvable over a broader dynamic energy scale than previously observed in rubidium scalar gases, we demonstrate that the tunneling dynamics in the multistate system strongly depends on an interaction induced nonlinearity and is influenced by the spin degree of freedom under certain conditions. We develop a rigorous multistate tunneling model to describe the observed dynamics. Combined with our recent observation of spatially manipulated spin dynamics, these results open up prospects for alternative multistate ramps and state transfer protocols. 
    more » « less
    Free, publicly-accessible full text available November 8, 2024
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)