skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Li, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2025
  2. Free, publicly-accessible full text available May 1, 2025
  3. Matni, Nikolai and (Ed.)
    Transfer operators offer linear representations and global, physically meaningful features of nonlinear dynamical systems. Discovering transfer operators, such as the Koopman operator, require careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow joint learning of the observables and Koopman operator with online data. Our results show we are able to reconstruct the evolution and represent the global features of complex dynamical systems. 
    more » « less
  4. Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  5. In this paper, we show that the finite subalgebra A R ( 1 ) \mathcal {A}^\mathbb {R}(1) , generated by S q 1 \mathrm {Sq}^1 and S q 2 \mathrm {Sq}^2 , of the R \mathbb {R} -motivic Steenrod algebra A R \mathcal {A}^\mathbb {R} can be given 128 different A R \mathcal {A}^\mathbb {R} -module structures. We also show that all of these A \mathcal {A} -modules can be realized as the cohomology of a 2 2 -local finite R \mathbb {R} -motivic spectrum. The realization results are obtained using an R \mathbb {R} -motivic analogue of the Toda realization theorem. We notice that each realization of A R ( 1 ) \mathcal {A}^\mathbb {R}(1) can be expressed as a cofiber of an R \mathbb {R} -motivic v 1 v_1 -self-map. The C 2 {\mathrm {C}_2} -equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the R O ( C 2 ) \mathrm {RO}({\mathrm {C}_2}) -graded Steenrod operations on a C 2 {\mathrm {C}_2} -equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the C 2 {\mathrm {C}_2} -equivariant realizations of A C 2 ( 1 ) \mathcal {A}^{\mathrm {C}_2}(1) . We find another application of the R \mathbb {R} -motivic Toda realization theorem: we produce an R \mathbb {R} -motivic, and consequently a C 2 {\mathrm {C}_2} -equivariant, analogue of the Bhattacharya-Egger spectrum Z \mathcal {Z} , which could be of independent interest. 
    more » « less