Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 4, 2026
-
Researchers choose different methods of making giant unilamellar vesicles in order to satisfy different constraints of their experimental designs. A challenge that arises when researchers use a variety of methods is that each method may produce vesicles with a different average lipid ratio, even if all experiments use lipids from a common stock mixture. Here, we use mass spectrometry to investigate ratios of lipids in vesicle solutions made by five common methods: electroformation on indium tin oxide slides, electroformation on platinum wires, gentle hydration, emulsion transfer, and extrusion. We made vesicles from either 5-component or binary mixtures of lipids chosen to span a wide range of physical properties: di(18:1)PC, di(16:0)PC, di(18:1)PG, di(12:0)PE, and cholesterol. For a mixture of all five of these lipids, ITO electroformation, Pt electroformation, gentle hydration, and extrusion methods result in only minor shifts in lipid ratios (≤ 5 mol%) relative to a common stock solution. In contrast, emulsion transfer results in ~80% less cholesterol than expected from the stock solution, which is counterbalanced by a surprising overabundance of saturated PC-lipid relative to all other phospholipids. Experiments using binary mixtures of saturated and unsaturated PC-lipids and cholesterol largely support results from the 5-component mixture. In general, our results imply that experiments that increment lipid ratios in small steps will produce data that are highly sensitive to the technique used and to sample-to-sample variations. For example, sample-to-sample variations are roughly ±2 mol% for 5-component vesicles produced by a single technique. In contrast, experiments that explore larger lipid ratio increments or that seek to explain general trends and new phenomena will be less sensitive to sample-to-sample variation and the method used.more » « less
-
null (Ed.)Promise programs are proliferating across the United States, with wide variation in their design. Using national data on 33 Promise programs affecting single, 2-year colleges, this study examines program effects on first-time, full-time college enrollments of students by race/ethnicity and gender classification. Results suggest Promise programs are associated with large percent increases in enrollments of Black and Hispanic students, especially students classified as females, at eligible colleges. Promise programs with merit requirements are associated with higher enrollment of White and Asian, Native Hawaiian, or Pacific Islander female students; those with income requirements are negatively associated with enrollment of most demographic groups. More generous Promise programs are associated with greater enrollment increases among demographic groups with historically higher levels of postsecondary attainment.more » « less
-
null (Ed.)Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry–based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction ( n = 16) compared to nonfailing donor hearts ( n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.more » « less
-
ABSTRACT The current highly pathogenic avian influenza H5N1 panzootic is having substantial impacts on wild birds and marine mammals. Following major and widespread outbreaks in South America, an incursion to Antarctica occurred late in the austral summer of 2023/2024 and was confined to the region of the Antarctic Peninsula. To infer potential underlying processes, we compiled H5N1 surveillance data from Antarctica and sub‐Antarctic Islands prior to the first confirmed cases.more » « less
An official website of the United States government
