Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article investigates block-level interference exploitation (IE) precoding for multiuser multiple-input-single-output (MU-MISO) downlink systems. To overcome the need for symbol-level IE precoding to frequently update the precoding matrix, we propose to jointly optimize all the precoders or transmit signals within a transmission block. The resultant precoders only need to be updated once per block, and while not necessarily constant over all the symbol slots, we refer to the technique as block-level slot-variant IE precoding. Through a careful examination of the optimal structure and the explicit duality inherent in block-level power minimization (PM) and signal-to-interference-plus-noise ratio (SINR) balancing (SB) problems, we discover that the joint optimization can be decomposed into subproblems with smaller variable sizes. As a step further, we propose block-level slot-invariant IE precoding by adding a structural constraint on the slot-variant IE precoding to maintain a constant precoder throughout the block. A novel linear precoder for IE is further presented, and we prove that the proposed slot-variant and slot-invariant IE precoding share an identical solution when the number of symbol slots does not exceed the number of users. Numerical simulations demonstrate that the proposed precoders achieve a significant complexity reduction compared against benchmark schemes, without sacrificing performance.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available July 23, 2025
-
Free, publicly-accessible full text available June 29, 2025
-
The deployment of Deep Learning Recommendation Models (DLRMs) involves the parallelization of extra-large embedding tables (EMTs) on multiple GPUs. Existing works overlook the input-dependent behavior of EMTs and parallelize them in a coarse-grained manner, resulting in unbalanced workload distribution and inter-GPU communication. To this end, we propose OPER, an algorithm-system co-design with OPtimality-guided Embedding table parallelization for large-scale Recommendation model training and inference. The core idea of OPER is to explore the connection between DLRM inputs and the efficiency of distributed EMTs, aiming to provide a near-optimal parallelization strategy for EMTs. Specifically, we conduct an in-depth analysis of various types of EMTs parallelism and propose a heuristic search algorithm to efficiently approximate an empirically near-optimal EMT parallelization. Furthermore, we implement a distributed shared memory-based system, which supports the lightweight but complex computation and communication pattern of fine-grained EMT parallelization, effectively converting theoretical improvements into real speedups. Extensive evaluation shows that OPER achieves 2.3× and 4.0× speedup on average in training and inference, respectively, over state-of-the-art DLRM frameworks.more » « lessFree, publicly-accessible full text available July 10, 2025
-
Free, publicly-accessible full text available April 14, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, for example, selecting individuals who would respond one way if encouraged and a different way if not encouraged. Using a combination of experimental and observational data, Li and Pearl derived tight bounds on the “benefit function”, which is the payoff/cost associated with selecting an individual with given characteristics. This paper extends the benefit function to the general form such that the treatment and effect are not restricted to binary. We propose an algorithm to test the identifiability of the nonbinary benefit function and an algorithm to compute the bounds of the nonbinary benefit function using experimental and observational data.more » « less
-
This paper deals with the problem of estimating the probabilities of causation when treatment and effect are not binary. Tian and Pearl derived sharp bounds for the probability of necessity and sufficiency (PNS), the probability of sufficiency (PS), and the probability of necessity (PN) using experimental and observational data. In this paper, we provide theoretical bounds for all types of probabilities of causation to multivalued treatments and effects. We further discuss examples where our bounds guide practical decisions and use simulation studies to evaluate how informative the bounds are for various combinations of data.more » « less
-
Free, publicly-accessible full text available April 27, 2025