skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Didong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gaussian processes are pervasive in functional data analysis, machine learning, and spatial statistics for modeling complex dependencies. Scientific data are often heterogeneous in their inputs and contain multiple known discrete groups of samples; thus, it is desirable to leverage the similarity among groups while accounting for heterogeneity across groups. We propose multi-group Gaussian processes (MGGPs) defined over Rp×C , where C is a finite set representing the group label, by developing general classes of valid (positive definite) covariance functions on such domains. MGGPs are able to accurately recover relationships between the groups and efficiently share strength across samples from all groups during inference, while capturing distinct group-specific behaviors in the conditional posterior distributions. We demonstrate inference in MGGPs through simulation experiments, and we apply our proposed MGGP regression framework to gene expression data to illustrate the behavior and enhanced inferential capabilities of multi-group Gaussian processes by jointly modeling continuous and categorical variables. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available November 21, 2025