In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated with 4–5 nm-sized platinum (Pt) nanoparticles. Then, titanium metal electrodes were deposited onto the sample surface to form a metal–semiconductor–metal (MSM) photodetector of 50 mm2 in size. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to study the crystal structure of the synthesized In2O3 film. The nanoplasmonic enhanced In2O3-based UV photodetectors were characterized by various UV wavelengths at different radiation intensities and temperatures. A high responsivity of up to 18 A/W was obtained at 300 nm wavelength when operating at 180 °C. In addition, the fabricated prototypes show a thermally stable baseline and excellent repeatability to a wide range of UV lights with low illumination intensity when operating at such a high temperature.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Peter X. (2)
-
Li, Eric Y. (2)
-
Zhou, Andrew F. (2)
-
Pacheco, Elluz (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Li, Eric Y. ; Pacheco, Elluz ; Zhou, Andrew F. ; Feng, Peter X. ( , Chemosensors)
We report studies of multifunctional, nanostructured diamond composites that were fabricated using chemical vapor deposition (CVD) techniques. Grain sizes from micrometer, to submicron, nano, and ultrananocrystalline diamond (UNCD) were controlled by varying CH4, hydrogen, and argon gas concentrations during the syntheses. Scanning electron microscopy (SEM) and Raman scattering spectroscopy were used to investigate the morphologies, composites, and crystallinities of the films. Four multifunctional sensor prototypes were designed, fabricated, and tested, based on the four diamond materials of different grain sizes. The responses of the four prototypes to either pollution gas or UV light illumination were systematically investigated at different operating temperatures. Experimental data indicated the obtained UNCD composite from the low-cost simple CVD fabrication technique appeared to have very good sensitivities when exposed to low concentrations of H2 or NH3 gas with a decent response and fast recovery time. Furthermore, highly induced photocurrents from both microdiamond- and UNCD-based prototypes to deep UV illumination were also demonstrated, with responsivities up to 2750 mA/W and 550 mA/W at 250 nm wavelength, respectively. Overall, the fabricated UNCD prototypes displayed a good balance in performance for multifunctional sensor applications in terms of responsivity, stability, and repeatability.