Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3corrosion. Herein, we designed and synthesized a Lewis basic single‐crystalline hydrogen‐bond crosslinked organic framework (HCOF‐50) for BF3storage and its application in catalysis. Specifically, we introduced self‐complementary
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ortho ‐alkoxy‐benzamide hydrogen‐bonding moieties to direct the formation of highly organized hydrogen‐bonded networks, which were subsequently photo‐crosslinked to generate HCOFs. The HCOF‐50 features Lewis basic thioether linkages and electron‐rich pore surfaces for BF3uptake. As a result, HCOF‐50 shows a record‐high 14.2 mmol/g BF3uptake capacity. The BF3uptake in HCOF‐50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single‐crystal X‐ray structures, combined with the high BF3uptake capacity and controlled sorption, highlights the molecular understanding of framework‐guest interactions in addressing contemporary challenges. -
Abstract Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3corrosion. Herein, we designed and synthesized a Lewis basic single‐crystalline hydrogen‐bond crosslinked organic framework (HCOF‐50) for BF3storage and its application in catalysis. Specifically, we introduced self‐complementary
ortho ‐alkoxy‐benzamide hydrogen‐bonding moieties to direct the formation of highly organized hydrogen‐bonded networks, which were subsequently photo‐crosslinked to generate HCOFs. The HCOF‐50 features Lewis basic thioether linkages and electron‐rich pore surfaces for BF3uptake. As a result, HCOF‐50 shows a record‐high 14.2 mmol/g BF3uptake capacity. The BF3uptake in HCOF‐50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single‐crystal X‐ray structures, combined with the high BF3uptake capacity and controlled sorption, highlights the molecular understanding of framework‐guest interactions in addressing contemporary challenges. -
null (Ed.)Interest in animal cell-based meat (ACBM) or laboratory-grown meat has been increasing; however, the economic viability of these potential products has not been thoroughly vetted. Recent studies suggest monoclonal antibody production technology can be adapted for the industrialization of ACBM production. This study provides a scenario-based assessment of the projected cost per kilogram of ACBM produced in the United States based on cellular metabolic requirements and process/chemical engineering conventions. A sensitivity analysis of the model identified the nine most influential cost factors for ACBM production out of 67 initial parameters. The results indicate that technological performance will need to approach technical limits for ACBM to achieve profitably as a commodity. However, the model also suggests that low-volume high-value specialty products could be viable based on current technology.more » « less