skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Hai-Ru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chirality plays an important role in nature. Nanoclusters can also exhibit chiral properties. We report herein a joint experimental and theoretical investigation on the geometric and electronic structures of B 31 − and B 32 − clusters, using photoelectron spectroscopy in combination with first-principles calculations. Two degenerate quasi-planar chiral C 1 enantiomers ( I and II , 1 A) with a central hexagonal vacancy are identified as the global minima of B 31 − . For B 32 − , two degenerate boat-like quasi-planar chiral C 2 structures ( VI and VII , 2 A) with a central hexagonal vacancy are also found as the global minima, with a low-lying chair-like C i B 32 − ( VIII , 2 A u ) also present in the experiment as a minor isomer. The chiral conversions in quasi-planar B 31 − and B 32 − clusters are investigated and relatively low barriers are found due to the high flexibility of these monolayer clusters, which feature multiple delocalized σ and π bonds over buckled molecular surfaces. 
    more » « less