skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Haoyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Direct synthesis of CH3COOH from CH4and CO2is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In thisCommunication, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO2, our strategy sought to first activate CO2to produce CO (through electrochemical CO2reduction) and O2(through water oxidation), followed by oxidative CH4carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH4carboxylation with 100 % atom economy. CH3COOH was obtained at a high selectivity (>80 %) and good yield (ca. 3.2 mmol g−1catin 3 h). Isotope labelling experiments confirmed that CH3COOH is produced through the coupling of CH4and CO2. This work represents the first successful integration of CO/O2production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO2that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis. 
    more » « less