skip to main content

Search for: All records

Creators/Authors contains: "Li, Hui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Galaxy mergers are known to host abundant young massive cluster (YMC) populations, whose formation mechanism is still not well-understood. Here, we present a high-resolution galaxy merger simulation with explicit star formation and stellar feedback prescriptions to investigate how mergers affect the properties of the interstellar medium and YMCs. Compared with a controlled simulation of an isolated galaxy, the mass fraction of dense and high-pressure gas is much higher in mergers. Consequently, the mass function of both molecular clouds and YMCs becomes shallower and extends to higher masses. Moreover, cluster formation efficiency is significantly enhanced and correlates positively with themore »star formation rate surface density and gas pressure. We track the orbits of YMCs and investigate the time evolution of tidal fields during the course of the merger. At an early stage of the merger, the tidal field strength correlates positively with YMC mass, λtid ∝ M0.71, which systematically affects the shape of the mass function and age distribution of the YMCs. At later times, most YMCs closely follow the orbits of their host galaxies, gradually sinking into the centre of the merger remnant due to dynamical friction, and are quickly dissolved via efficient tidal disruption. Interestingly, YMCs formed during the first passage, mostly in tidal tails and bridges, are distributed over a wide range of galactocentric radii, greatly increasing their survivability because of the much weaker tidal field in the outskirts of the merger system. These YMCs are promising candidates for globular clusters that survive to the present day.« less
    Free, publicly-accessible full text available June 3, 2023
  2. ABSTRACT The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission frommore »collisional excitation amounts to fcol ∼ 5–$10{{\ \rm per\ cent}}$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $\sim 40{{\ \rm per\ cent}}$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $f_{\rm abs}\approx 28{{\ \rm per\ cent}}$ and $f_{\rm He}\approx 9{{\ \rm per\ cent}}$, respectively. Together with an escape fraction of $f_{\rm esc}\approx 6{{\ \rm per\ cent}}$, this reduces the available budget for hydrogen line emission by nearly half ($f_{\rm H}\approx 57{{\ \rm per\ cent}}$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.« less
    Free, publicly-accessible full text available May 9, 2023
  3. Abstract Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high sensitivity to parity-violating effects, such as the Schiff moments. Currently the best limits on Schiff moments are set with diamagnetic atoms. Polar molecules with quantum-enhanced sensing capabilities, however, can offer better sensitivity. In this work, we consider the prototypical 223 Fr 107 Ag molecule, as the octupole deformation of the unstable 223 Fr francium nucleus amplifies the nuclear Schiff moment of the molecule by two orders of magnitude relative to that of spherical nuclei and as the silver atom has a large electron affinity.more »To develop a competitive experimental platform based on molecular quantum systems, 223 Fr atoms and 107 Ag atoms have to be brought together at ultracold temperatures. That is, we explore the prospects of forming 223 Fr 107 Ag from laser-cooled Fr and Ag atoms. We have performed fully relativistic electronic-structure calculations of ground and excited states of FrAg that account for the strong spin-dependent relativistic effects of Fr and the strong ionic bond to Ag. In addition, we predict the nearest-neighbor densities of magnetic-field Feshbach resonances in ultracold 223 Fr + 107 Ag collisions with coupled-channel calculations. These resonances can be used for magneto-association into ultracold, weakly-bound FrAg. We also determine the conditions for creating 223 Fr 107 Ag molecules in their absolute ground state from these weakly-bound dimers via stimulated Raman adiabatic passage using our calculations of the relativistic transition electric dipole moments.« less
    Free, publicly-accessible full text available February 1, 2023
  4. null (Ed.)
    Free, publicly-accessible full text available October 1, 2022
  5. Free, publicly-accessible full text available September 29, 2022
  6. Abstract This study compares the impacts of Arctic sea ice decline on the Atlantic Meridional Overturning Circulation (AMOC) in two configurations of the Community Earth System Model (CESM) with different horizontal resolution. In a suite of model experiments we impose radiative imbalance at the ice surface, replicating a loss of sea ice cover comparable to the observed during 1979-2014, and find dramatic differences in the AMOC response between the two models. In the lower-resolution configuration, the AMOC weakens by about one third over the first 100 years, approaching a new quasi-equilibrium. By contrast, in the higher-resolution configuration, the AMOC weakensmore »by ~10% during the first 20-30 years followed by a full recovery driven by invigorated deep water formation in the Labrador Sea and adjacent regions. We investigate these differences using a diagnostic AMOC stability indicator, which reflects the AMOC freshwater transport in and out of the basin and hence the strength of the basin-scale salt-advection feedback. This indicator suggests that the AMOC in the lower-resolution model is less stable and more sensitive to surface perturbations, as confirmed by hosing experiments mimicking Arctic freshening due to sea ice decline. Differences between the models’ mean states, including the Atlantic mean surface freshwater fluxes, control the differences in AMOC stability. Our results demonstrate that the AMOC stability indicator is indeed useful for evaluating AMOC sensitivity to perturbations. Finally, we emphasize that, despite the differences in the long-term adjustment, both models simulate a multi-decadal AMOC weakening caused by Arctic sea ice decline, relevant to climate change.« less
  7. We report herein that dendron-shaped macromolecules AB n crystallize into well-ordered pyramid-like structures from mixed solvents, instead of spherical motifs with curved structures, as found in the bulk. The design of the asymmetric molecular architecture and the choice of mixed solvents are applied as strategies to manipulate the crystallization process. In mixed solvents, the solvent selection for the Janus macromolecule and the existence of dominant crystalline clusters contribute to the formation of flat nanosheets. Whereas during solvent evaporation, the bulkiness of the asymmetric macromolecules easily creates defects within 2D nanosheets which lead to their spiral growth through screw dislocation. Themore »size of the nanosheets and the growth into 2D nanosheets or 3D pyramidal structures can be regulated by the solvent ratio and solvent compositions. Moreover, macromolecules of higher asymmetry generate polycrystals of lower orderliness, probably due to higher localized stress.« less
  8. Abstract

    Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali$$^{23}\hbox {Na}^{87}$$23Na87Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or$$\hbox {Na}_2$$Na2and$$\hbox {Rb}_2$$Rb2molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when themore »trapping laser is present during the collision. We find that at a wavelength of 1064 nm the$$\hbox {Na}_2\hbox {Rb}_2$$Na2Rb2complex is quickly destroyed and thus that the$$^{23}\hbox {Na}^{87}$$23Na87Rb molecules are rapidly lost.

    « less
  9. ABSTRACT We perform a suite of hydrodynamic simulations to investigate how initial density profiles of giant molecular clouds (GMCs) affect their subsequent evolution. We find that the star formation duration and integrated star formation efficiency of the whole clouds are not sensitive to the choice of different profiles but are mainly controlled by the interplay between gravitational collapse and stellar feedback. Despite this similarity, GMCs with different profiles show dramatically different modes of star formation. For shallower profiles, GMCs first fragment into many self-gravitation cores and form subclusters that distributed throughout the entire clouds. These subclusters are later assembled ‘hierarchically’more »to central clusters. In contrast, for steeper profiles, a massive cluster is quickly formed at the centre of the cloud and then gradually grows its mass via gas accretion. Consequently, central clusters that emerged from clouds with shallower profiles are less massive and show less rotation than those with the steeper profiles. This is because (1) a significant fraction of mass and angular momentum in shallower profiles is stored in the orbital motion of the subclusters that are not able to merge into the central clusters, and (2) frequent hierarchical mergers in the shallower profiles lead to further losses of mass and angular momentum via violent relaxation and tidal disruption. Encouragingly, the degree of cluster rotations in steeper profiles is consistent with recent observations of young and intermediate-age clusters. We speculate that rotating globular clusters are likely formed via an ‘accretion’ mode from centrally concentrated clouds in the early Universe.« less