- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cui, Jingbiao (1)
-
Gonzalez, Roberto (1)
-
Hathaway, Evan (1)
-
Jiang, Yan (1)
-
Li, Jianchao (1)
-
Ojo, Ibikunle (1)
-
Perez, Jose (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using a scanning electron microscope, we irradiate graphene drums with electrons at an energy of 20 keV and a dosage of about 1.58 × 1017 electrons/cm2. The drums consist of graphene exfoliated in ambient air over holes having a diameter of 4.6 μm and etched into an SiO2 substrate. After irradiation, we observe that the drum’s suspended monolayer (ML) region has a ratio of the Raman D peak height, ID, to the Raman G peak height, IG, as high as 6.3. In contrast, the supported ML on the SiO2 substrate has an ID/IG ratio of 0.49. Previous studies have shown that graphene drums containing air can leak in a vacuum at a low rate. We attribute the high ID/IG ratio of the suspended ML to the air that may be in the drums. We propose that the air produces much adsorbed water on the ML, resulting in a high average defect density during irradiation. We present Raman maps of the full-width-at-half maximum, position, and height of the G, 2D, D, and D’ peaks before and after irradiation and maps of ID/IG and ID/ID’. We anneal the drums at temperatures from 50 to 215 °C and find that ID/IG significantly reduces to 0.42. The annealing data are analyzed using an Arrhenius plot. We also find that ID/ID’ depends on annealing temperature and has values ≥8, in the range expected for sp3 defects, for ID/IG ≤ 3.9. This irradiation method may help achieve high average defect densities in ML graphene, imparting novel and potentially valuable properties.more » « less
An official website of the United States government
