skip to main content


Search for: All records

Creators/Authors contains: "Li, Jianmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Underground Nuclear Astrophysics Experiment in China (JUNA) has been commissioned by taking the advantage of the ultra-low background in Jinping underground lab. High current mA level 400 KV accelerator with an ECR source and BGO detectors were commissioned. JUNA studies directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. In the first quarter of 2021, JUNA performed the direct measurements of 25 Mg(p, γ ) 26 Al, 19 F(p, α ) 16 O, 13 C( α ,n) 16 O and 12 C( α , γ ) 16 O near the Gamow window. The experimental results reflect the potential of JUNA with higher statistics, precision and sensitivity of the data. The preliminary results of JUNA experiment and future plan are given. 
    more » « less
  2. Abstract

    The cycle life of rechargeable lithium (Li)‐metal batteries is mainly restrained by dendrites growth on the Li‐metal anode and fast depletion of the electrolyte. Here, we report on a stable Li‐metal anode enabled by interconnected two‐dimensional (2D) arrays of niobium nitride (NbN) nanocrystals as the Li host, which exhibits a high Coulombic efficiency (>99 %) after 500 cycles. Combining theoretical and experimental analysis, it is inferred that this performance is due to the intrinsic properties of interconnected 2D arrays of NbN nanocrystals, such as thermodynamic stability against Li‐metal, high Li affinity, fast Li+migration, and Li+transport through the porous 2D nanosheets. Coupled with a lithium nickel–manganese–cobalt oxide cathode, full Li‐metal batteries were built, which showed high cycling stability under practical conditions – high areal cathode loading ≥4 mAh cm−2, low negative/positive (N/P) capacity ratio of 3, and lean electrolyte weight to cathode capacity ratio of 3 g Ah−1. Our results indicate that transition metal nitrides with a rationally designed structure may alleviate the challenges of developing dendrite‐free Li‐metal anodes.

     
    more » « less