- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Hecker_Denschlag, Johannes (3)
-
Li, Jing-Lun (3)
-
D'Incao, José P (2)
-
Julienne, Paul S (2)
-
Deiß, Markus (1)
-
Dorer, Dominik (1)
-
D’Incao, José_P (1)
-
Haze, Shinsuke (1)
-
Julienne, Paul_S (1)
-
Tiemann, Eberhard (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We theoretically investigate the spin structure of weakly bound diatomic van der Waals molecules formed by two identical bosonic alkali atoms. Our studies were performed using known Born-Oppenheimer potentials while developing a reduced interaction potential model. Such reduced potential models are currently a key for solving certain classes of few-body problems of atoms as they decrease the numerical burden on the computation. Although the reduced potentials are significantly shallower than actual Born-Oppenheimer potentials, they still capture the main properties of the near-threshold bound states, including their spin structure, and the scattering states over a broad range of magnetic fields. At zero magnetic field, we find that the variation in spin structure across different alkali species originates from the interplay between electronic spin exchange and hyperfine interactions. To characterize this competition we introduce a single parameter that is a function of the singlet and triplet scattering lengths, the atomic hyperfine splitting constant, and the molecular binding energy. We show that this parameter can be used to classify the spin structure of vdW molecules for each atomic species. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Li, Jing-Lun; Julienne, Paul S; Hecker_Denschlag, Johannes; D'Incao, José P (, Physical Review A)Free, publicly-accessible full text available January 13, 2026
-
Haze, Shinsuke; Li, Jing-Lun; Dorer, Dominik; D’Incao, José_P; Julienne, Paul_S; Tiemann, Eberhard; Deiß, Markus; Hecker_Denschlag, Johannes (, Nature Physics)Abstract Gaining control over chemical reactions at the quantum level is a central goal of cold and ultracold chemistry. Here we demonstrate a method for coherently steering the reaction flux across different product spin channels for a three-body recombination process in a cloud of trapped cold atoms. We use a magnetically tunable Feshbach resonance to admix, in a controlled way, a specific spin state to the reacting collision complex. This allows us to control the reaction flux into the admixed spin channel, which can be used to alter the reaction products. We also investigate the influence of an Efimov resonance on the reaction dynamics, observing a global enhancement of three-body recombination without favouring particular reaction channels. Our control scheme can be extended to other reaction processes and could be combined with other methods, such as quantum interference of reaction paths, to achieve further tuning capabilities of few-body reactions.more » « less