skip to main content


Search for: All records

Creators/Authors contains: "Li, Jingqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decision-making in multi-player games can be extremely challenging, particularly under uncertainty. In this work, we propose a new sample-based approximation to a class of stochastic, general-sum, pure Nash games, where each player has an expected-value objective and a set of chance constraints. This new approximation scheme inherits the accuracy of objective approximation from the established sample average approximation (SAA) method and enjoys a feasibility guarantee derived from the scenario optimization literature. We characterize the sample complexity of this new game-theoretic approximation scheme, and observe that high accuracy usually requires a large number of samples, which results in a large number of sampled constraints. To accommodate this, we decompose the approximated game into a set of smaller games with few constraints for each sampled scenario, and propose a decentralized, consensus-based ADMM algorithm to efficiently compute a generalized Nash equilibrium (GNE) of the approximated game. We prove the convergence of our algorithm to a GNE and empirically demonstrate superior performance relative to a recent baseline algorithm based on ADMM and interior point method. 
    more » « less
    Free, publicly-accessible full text available December 13, 2024
  2. In multi-agent dynamic games, the Nash equilibrium state trajectory of each agent is determined by its cost function and the information pattern of the game. However, the cost and trajectory of each agent may be unavailable to the other agents. Prior work on using partial observations to infer the costs in dynamic games assumes an open-loop information pattern. In this work, we demonstrate that the feedback Nash equilibrium concept is more expressive and encodes more complex behavior. It is desirable to develop specific tools for inferring players’ objectives in feedback games. Therefore, we consider the dynamic game cost inference problem under the feedback information pattern, using only partial state observations and incomplete trajectory data. To this end, we first propose an inverse feedback game loss function, whose minimizer yields a feedback Nash equilibrium state trajectory closest to the observa- tion data. We characterize the landscape and differentiability of the loss function. Given the difficulty of obtaining the exact gradient, our main contribution is an efficient gradient approximator, which enables a novel inverse feedback game solver that minimizes the loss using first-order optimization. In thorough empirical evaluations, we demonstrate that our algorithm converges reliably and has better robustness and generalization performance than the open-loop baseline method when the observation data reflects a group of players acting in a feedback Nash game. 
    more » « less
  3. null (Ed.)