Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 27, 2025
-
Anytime neural networks (AnytimeNNs) are a promising solution to adaptively adjust the model complexity at runtime under various hardware resource constraints. However, the manually-designed AnytimeNNs are biased by designers' prior experience and thus provide sub-optimal solutions. To address the limitations of existing hand-crafted approaches, we first model the training process of AnytimeNNs as a discrete-time Markov chain (DTMC) and use it to identify the paths that contribute the most to the training of AnytimeNNs. Based on this new DTMC-based analysis, we further propose TIPS, a framework to automatically design AnytimeNNs under various hardware constraints. Our experimental results show that TIPS can improve the convergence rate and test accuracy of AnytimeNNs. Compared to the existing AnytimeNNs approaches, TIPS improves the accuracy by 2%-6.6% on multiple datasets and achieves SOTA accuracy-FLOPs tradeoffs.more » « less
-
ABSTRACT Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or $0.43^{+0.04}_{-0.03}$M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar.
-
Abstract The abundance and distribution of44Ti tells us about the nature of the core-collapse supernovae explosions. There is a need to understand the nuclear reaction network creating and destroying44Ti in order to use it as a probe for the explosive mechanism. The44Ti(
α, p )47V reaction is a very important reaction and it controls the destruction of44Ti. Difficulties with direct measurements have led to an attempt to study this reaction indirectly. Here, the first step of the indirect study which is the identification of levels of the compound nucleus48Cr is presented. A 100-MeV proton beam was incident on a50Cr target. States in48Cr were populated in the50Cr(p, t )48Cr reaction. The tritons were momentum-analysed in the K600 Q2D magnetic spectrometer at iThemba LABS. -
Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables.more » « less