Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 7, 2026
-
Abstract Persulfides (RSS–) and thioselenides (RSSe–) play important roles in biological S and Se transfer reactions, and their interactions with Lewis acidic moieties exert control over reactivity. Here, we report the synthesis and reactivity of mononuclear Zn2+persulfide and thioselenide complexes from a unified synthetic strategy of using isolable dichalcogenide precursors. Highlighting the benefits of replacing S with Se, we use77Se NMR spectroscopy to reveal the effects of Lewis acid coordination (K+, Na+, Zn2+) on the electronic environment of the terminal Se of the thioselenide (R–Sβ–Seα–). Coordination of RSSe–to Zn2+polarizes the Se─S bond, rendering the internal sulfur atom (R–Sβ–Seα–) susceptible to nucleophilic attack and resulting in selenide (Se2–) release. We also prepared a mononuclear Zn2+persulfide complex and probed differences in persulfide nucleophilicity when compared to the parent thiolate. Alkylation of the Zn2+persulfide is considerably faster than the Zn2+thiolate, supporting the proposed nucleophilicity enhancement of persulfides due to the α‐effect, and providing new insights into persulfide reactivity when coordinated to metals. Taken together, these investigations highlight the utility of small molecule synthetic models in advancing insights into the biological chemistry of metal dichaclogenides.more » « lessFree, publicly-accessible full text available November 21, 2026
-
Hydrogen selenide (H2Se) is an emerging bioregulator and precursor to essential selenium-containing biomolecules. We show that aryl isoselenocyanates (ISeC-R) release H2Se upon activation by cysteine, and that electronic substitution can modulate release profiles. We also demonstrate applications to live cell imaging, expanding available tools for investigating H2Se chemical biology.more » « lessFree, publicly-accessible full text available October 30, 2026
-
The [ Ph B( t BuIm) 3 ] 1− ligand has gained increased attention since it was first reported in 2006 due to its ability to stabilize highly reactive first row transition metal complexes. In this work, we investigate the coordination chemistry of this ligand with redox-inert zinc to understand how a zinc metal center behaves in such a strong coordinating environment. The Ph B( t BuIm) 3 ZnCl (1) complex can be formed via deprotonation of [ Ph B( t BuIm) 3 ][OTf] 2 followed by the addition of ZnCl 2 . Salt metathesis reaction with nucleophilic n -BuLi yields the highly carbon-rich zinc coordination complex Ph B( t BuIm) 3 ZnBu (2) with three carbene atom donors and one carbanion donor. In contrast, reaction of complex 1 with a less nucleophilic polysulfide reagent, [K.18-C-6] 2 [S 4 ], leads to the formation of a tetrahedral zinc tetrasulfido complex via protonation of one carbene donor to form Ph B( t BuIm) 2 ( t BuImH)Zn(κ 2 -S 4 ) (3).more » « less
An official website of the United States government
