skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Kuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PurposeThis study aims to present the evaluation of a competency-based online professional development training program, PhD Progression, tied to a digital badge system, created to support PhD students across fields. Design/methodology/approachThis study took place at Boston University, a large, nonprofit, Carnegie Classified R1 research-intensive institution located in the northeastern region of the USA. Through internal campus collaborations, the authors developed a PhD core capacities framework. Building from this framework, the authors designed the first learning level of the program and ran a pilot study with PhD students from various fields and at different stages of their PhD. Using surveys and focus groups, the authors collected both quantitative and qualitative data to evaluate this program. FindingsThe quantitative and qualitative data show that the majority of the PhD student participants found the contents of the competency-based training program useful, appropriate for building skills and knowledge and therefore relevant for both their degree progress and their future job. Gaining digital badges significantly increased their motivation to complete training modules. Practical implicationsThis type of resource is scalable to other institutions that wish to provide self-paced professional development support to their PhD students while rewarding them for investing time in building professional skills and enabling them to showcase these skills to potential employers. Originality/valueThis study demonstrates, for the first time, that tying a digital badging system to a competency-based professional development program significantly motivates PhD students to set professional development goals and invest time in building skills. 
    more » « less
  2. null (Ed.)
  3. Abstract Metallic nanostructures with nanogap features can confine electromagnetic fields into extremely small volumes. In particular, as the gap size is scaled down to sub‐nanometer regime, the quantum effects for localized field enhancement reveal the ultimate capability for light–matter interaction. Although the enhancement factor approaching the quantum upper limit has been reported, the grand challenge for surface‐enhanced vibrational spectroscopic sensing remains in the inherent randomness, preventing uniformly distributed localized fields over large areas. Herein, a strategy to fabricate high‐density random metallic nanopatterns with accurately controlled nanogaps, defined by atomic‐layer‐deposition and self‐assembled‐monolayer processes, is reported. As the gap size approaches the quantum regime of ≈0.78 nm, its potential for quantitative sensing, based on a record‐high uniformity with the relative standard deviation of 4.3% over a large area of 22 mm × 60 mm, is demonstrated. This superior feature paves the way towards more affordable and quantitative sensing using quantum‐limit‐approaching nanogap structures. 
    more » « less