Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The high-power performance of a D-band (110–170 GHz) traveling wave amplifier (TWA) is reported. The amplifier was designed and fabricated using a GaN-on-SiC high-electron mobility transistor (HEMT) technology integrated with a substrate integrated waveguide (SIW) structure for low-loss on-chip power combining. Active injection load-pull measurements of both discrete HEMTs as well as the completed MMIC TWA were performed. The discrete HEMT measurements at D-band supplement the available design data for these scaled GaN HEMTs. The TWA achieved a peak power-added efficiency (PAE) of 9.1% at 145 GHz. The available output power exceeded 23.5 dBm from 135-145 GHz, with a maximum output power of 24.7 dBm (295 mW) at 140 GHz. Keywords—millimetermore » « lessFree, publicly-accessible full text available September 21, 2026
-
Free, publicly-accessible full text available July 9, 2026
-
Free, publicly-accessible full text available July 8, 2026
-
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The many emerging applications of nanoparticles in diverse fields in chemistry and biology require the characterization of interactions between nanoparticles and surrounding biomolecules, such as proteins. Nuclear magnetic resonance (NMR) spin relaxation of proteins, highly sensitive to interactions with nanoparticles, contains rich information about protein mobility and binding kinetics. The interactions of globular proteins with silica nanoparticles differ markedly from those with liposome nanoparticles, although both are driven by electrostatic forces. For unmodified silica nanoparticles, their interactions with an internally rigid protein like ubiquitin uniformly increases the backbone amide 15N transverse R2 relaxation for most residues. In contrast, for ubiquitin-POPG liposome interactions, their characteristic transverse R2 profiles indicate that ubiquitin undergoes diffusive rotational motions on the liposome surface. Here, we show that coating silica nanoparticles with sulfobetaine siloxane (SBS) zwitterionic molecules profoundly alters their interactions with proteins in a manner that closely resembles the interaction mode observed with liposomes. 15N-R2 relaxation reveals that ubiquitin and the Ras-binding domain (RBD) of B-Raf both exhibit axial reorientational motions about an axis perpendicular to the nanoparticle surface in the bound state, where the interactions involve the predominantly positively charged surface regions. These findings point toward a global dynamics mechanism of proteins when interacting with organic or inorganic nanoparticles with densely charged soft surfaces. This information may help tailor the coatings of nanoparticles to adopt specific modes of interaction with proteins that can be used to control their function in vivo and in vitro.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Free, publicly-accessible full text available November 26, 2025
-
Hexagonal semiconductors such as 4H SiC have important high-frequency, high-power, and high-temperature applications. The applications require accurate knowledge of both ordinary and extraordinary relative permittivities, ε and ε||, perpendicular and parallel, respectively, to the c axis of these semiconductors. However, due to challenges for suitable test setups and precision high-frequency measurements, little reliable data exists for these semiconductors especially at millimeter-wave frequencies. Recently, we reported ε|| of 4H SiC from 110 to 170 GHz. This paper expands on the previous report to include both ε and ε|| of the same material from 55 to 330 GHz, as well as their temperature and humidity dependence enabled by improving the measurement precision to two decimal points. For example, at room temperature, real ε and ε|| are constant at 9.77 ± 0.01 and 10.20 ± 0.05, respectively. By contrast, the ordinary loss tangent increases linearly with the frequency f in the form of (4.9 ± 0.1) 10−16 f. The loss tangent, less than 1 10−4 over most millimeter-wave frequencies, is significantly lower than that of sapphire, our previous low-loss standard. Finally, both ε and ε|| have weak temperature coefficients on the order of 10−4 /°C. The knowledge reported here is especially critical to millimeter-wave applications of 4H SiC, not only for solid-state devices and circuits, but also as windows for high-power vacuum electronics.more » « less
-
Abstract Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
