skip to main content

Search for: All records

Creators/Authors contains: "Li, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 2, 2022
  2. Free, publicly-accessible full text available July 11, 2022
  3. Free, publicly-accessible full text available June 1, 2022
  4. Free, publicly-accessible full text available April 1, 2022
  5. Known for their adaptability to surroundings, the capability of transport control of molecules, or the ability to convert one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverse applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli‐responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components tomore »color‐changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane‐based polymers containing responsive elements built into their architecture. In the context of stimuli‐responsive chemistries, current technological advances, as well as a critical outline of future opportunities and applications, are also tackled.« less
    Free, publicly-accessible full text available April 1, 2022
  6. Free, publicly-accessible full text available March 22, 2022
  7. A series of simple ditopic hydrogen-bonding-capable molecules functionalized with 2,4-diamino-1,3,5-triazine (DAT), barbiturate (B), and phthalhydrazide (PH) on both termini of a 2,2′-bithiophene linker were designed and synthesized. The intrinsic electronic structures of the ditopic DAT, PH, and B molecules were investigated with ground-state density functional theory calculations. Their solution absorbance was investigated with UV-vis, where it was found that increasing size of R group substituents on the bithiophene linker resulted in a general blue-shift in solution absorbance maximum. The solid-state optical properties of ditopic DAT and B thin films were evaluated by UV-vis, and it was found that the solid-statemore »absorbance was red-shifted with respect to solution absorbance in all cases. The three DAT molecules were vacuum-thermal-deposited onto Au(111) substrates and the morphologies were examined using scanning tunneling microscopy. (DAT-T)2 was observed to organize into six-membered rosettes on the surface, whereas (DAT-TMe)2 formed linear assemblies before and after thermal annealing. For (DAT-Toct)2 , an irregular arrangement was observed, while (B-TMe)2 showed several co-existent assembly patterns. The work presented here provides fundamental molecular–supramolecular relationships useful for semiconductive materials design based on ditopic hydrogen-bonding-capable building blocks.« less
    Free, publicly-accessible full text available April 1, 2022