skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Lina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. null (Ed.)
  3. null (Ed.)
  4. Both Cuckler and Yuster independently conjectured that when $$n$$ is an odd positive multiple of $$3$$ every regular tournament on $$n$$ vertices contains a collection of $n/3$$ vertex-disjoint copies of the cyclic triangle. Soon after, Keevash \& Sudakov proved that if $$G$$ is an orientation of a graph on $$n$$ vertices in which every vertex has both indegree and outdegree at least $(1/2 - o(1))n$, then there exists a collection of vertex-disjoint cyclic triangles that covers all but at most $$3$$ vertices. In this paper, we resolve the conjecture of Cuckler and Yuster for sufficiently large $$n$$. 
    more » « less
  5. null (Ed.)