skip to main content

Search for: All records

Creators/Authors contains: "Li, Pan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Database fingerprinting has been widely used to discourage unauthorized redistribution of data by providing means to identify the source of data leakages. However, there is no fingerprinting scheme aiming at achieving liability guarantees when sharing genomic databases. Thus, we are motivated to fill in this gap by devising a vanilla fingerprinting scheme specifically for genomic databases. Moreover, since malicious genomic database recipients may compromise the embedded fingerprint (distort the steganographic marks, i.e. the embedded fingerprint bit-string) by launching effective correlation attacks, which leverage the intrinsic correlations among genomic data (e.g. Mendel’s law and linkage disequilibrium), we also augment the vanilla scheme by developing mitigation techniques to achieve robust fingerprinting of genomic databases against correlation attacks.

    Results

    Via experiments using a real-world genomic database, we first show that correlation attacks against fingerprinting schemes for genomic databases are very powerful. In particular, the correlation attacks can distort more than half of the fingerprint bits by causing a small utility loss (e.g. database accuracy and consistency of SNP–phenotype associations measured via P-values). Next, we experimentally show that the correlation attacks can be effectively mitigated by our proposed mitigation techniques. We validate that the attacker can hardly compromise a large portion of the fingerprintmore »bits even if it pays a higher cost in terms of degradation of the database utility. For example, with around 24% loss in accuracy and 20% loss in the consistency of SNP–phenotype associations, the attacker can only distort about 30% fingerprint bits, which is insufficient for it to avoid being accused. We also show that the proposed mitigation techniques also preserve the utility of the shared genomic databases, e.g. the mitigation techniques only lead to around 3% loss in accuracy.

    Availability and implementation

    https://github.com/xiutianxi/robust-genomic-fp-github.

    « less
  2. Free, publicly-accessible full text available January 1, 2023
  3. Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks by fusing network structure and node features. Modern GNN models are built upon iterative aggregation of neighbor's/proximity features by message passing. Its prediction performance has been shown to be strongly bounded by assortative mixing in the graph, a key property wherein nodes with similar attributes mix/connect with each other. We observe that real world networks exhibit heterogeneous or diverse mixing patterns and the conventional global measurement of assortativity, such as global assortativity coefficient, may not be a representative statistic in quantifying this mixing. We adopt a generalized concept, node-level assortativity, one that is based at the node level to better represent the diverse patterns and accurately quantify the learnability of GNNs. We find that the prediction performance of a wide range of GNN models is highly correlated with the node level assortativity. To break this limit, in this work, we focus on transforming the input graph into a computation graph which contains both proximity and structural information as distinct type of edges. The resulted multi-relational graph has an enhanced level of assortativity and, more importantly, preserves rich information from the original graph. We then propose to runmore »GNNs on this computation graph and show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing. Empirically, we show the benefits of adopting our transformation framework for semi-supervised node classification task on a variety of real world graph learning benchmarks.« less
  4. Dynamic social interaction networks are an important abstraction to model time-stamped social interactions such as eye contact, speaking and listening between people. These networks typically contain informative while subtle patterns that reflect people’s social characters and relationship, and therefore attract the attentions of a lot of social scientists and computer scientists. Previous approaches on extracting those patterns primarily rely on sophisticated expert knowledge of psychology and social science, and the obtained features are often overly task-specific. More generic models based on representation learning of dynamic networks may be applied, but the unique properties of social interactions cause severe model mismatch and degenerate the quality of the obtained representations. Here we fill this gap by proposing a novel framework, termed TEmporal network-DIffusion Convolutional networks (TEDIC), for generic representation learning on dynamic social interaction networks. We make TEDIC a good fit by designing two components: 1) Adopt diffusion of node attributes over a combination of the original network and its complement to capture long-hop interactive patterns embedded in the behaviors of people making or avoiding contact; 2) Leverage temporal convolution networks with hierarchical set-pooling operation to flexibly extract patterns from different-length interactions scattered over a long time span. The design also endowsmore »TEDIC with certain self-explaining power. We evaluate TEDIC over five real datasets for four different social character prediction tasks including deception detection, dominance identification, nervousness detection and community detection. TEDIC not only consistently outperforms previous SOTA’s, but also provides two important pieces of social insight. In addition, it exhibits favorable societal characteristics by remaining unbiased to people from different regions. Our project website is: http://snap.stanford.edu/tedic/.« less
  5. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification.
  6. Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predictmore »links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 15% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 5 out of the 6 networks in the transductive setting.« less
  7. null (Ed.)
    Differential privacy has been widely adopted to release continuous- and scalar-valued information on a database without compromising the privacy of individual data records in it. The problem of querying binary- and matrix-valued information on a database in a differentially private manner has rarely been studied. However, binary- and matrix-valued data are ubiquitous in real-world applications, whose privacy concerns may arise under a variety of circumstances. In this paper, we devise an exclusive or (XOR) mechanism that perturbs binary- and matrix-valued query result by conducting an XOR operation on the query result with calibrated noises attributed to a matrix-valued Bernoulli distribution. We first rigorously analyze the privacy and utility guarantee of the proposed XOR mechanism. Then, to generate the parameters in the matrix-valued Bernoulli distribution, we develop a heuristic approach to minimize the expected square query error rate under ϵ -differential privacy constraint. Additionally, to address the intractability of calculating the probability density function (PDF) of this distribution and efficiently generate samples from it, we adapt an Exact Hamiltonian Monte Carlo based sampling scheme. Finally, we experimentally demonstrate the efficacy of the XOR mechanism by considering binary data classification and social network analysis, all in a differentially private manner. Experiment resultsmore »show that the XOR mechanism notably outperforms other state-of-the-art differentially private methods in terms of utility (such as classification accuracy and F 1 score), and even achieves comparable utility to the non-private mechanisms.« less
  8. Edge streams are commonly used to capture interactions in dynamic networks, such as email, social, or computer networks. The problem of detecting anomalies or rare events in edge streams has a wide range of applications. However, it presents many challenges due to lack of labels, a highly dynamic nature of interactions, and the entanglement of temporal and structural changes in the network. Current methods are limited in their ability to address the above challenges and to efficiently process a large number of interactions. Here, we propose F-FADE, a new approach for detection of anomalies in edge streams, which uses a novel frequency-factorization technique to efficiently model the time-evolving distributions of frequencies of interactions between node-pairs. The anomalies are then determined based on the likelihood of the observed frequency of each incoming interaction. F-FADE is able to handle in an online streaming setting a broad variety of anomalies with temporal and structural changes, while requiring only constant memory. Our experiments on one synthetic and six real-world dynamic networks show that F-FADE achieves state of the art performance and may detect anomalies that previous methods are unable to find.