skip to main content

Search for: All records

Creators/Authors contains: "Li, Qianqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2024
  2. Abstract

    Controlled design and patterning of layered transition metal dichalcogenides (TMDs) into specific dimensions and geometries hold great potential for next‐generation micro/nanoscale electronic applications. Herein, the large‐scale fabrication of MoS2ribbons with widths ranging from micro‐ to nanoscale is reported. Their unique electric and thermal properties introduced by the shape change and defect creation are also demonstrated, with particular focus on the performance associated with light–matter interactions. The theoretical calculation indicates significantly increased absorption and scattering efficiency of the MoS2ribbons with decreasing width. As a result, enhanced photocarrier generation ability is detected on their phototransistors with defect‐modulated light‐response behavior. The light‐induced thermal transport properties of the MoS2ribbons are further studied. A decreased thermal conductivity is observed on narrower ribbons, attributed to the defects created during fabrication. It is also found that the effect of phonon scattering at ribbon edges on their thermal conductivity is insignificant, and the thermal transport has no obvious dependence on the ribbon direction at such width scale. This study evaluates the prospects for designing and fabricating TMD semiconductors with specific geometries for future optoelectronic applications.

    more » « less