skip to main content

Search for: All records

Creators/Authors contains: "Li, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The tip of the red giant branch (TRGB) provides a luminous standard candle for constructing distance ladders to measure the Hubble constant. In practice, its measurements via edge-detection response (EDR) are complicated by the apparent fuzziness of the tip and the multipeak landscape of the EDR. Previously, we optimized an unsupervised algorithm, Comparative Analysis of TRGBs, to minimize the variance among multiple halo fields per host without relying on individualized choices, achieving state-of-the-art ∼<0.05 mag distance measures for optimal data. Here we apply this algorithm to an expanded sample of SN Ia hosts to standardize these to multiple fields in the geometric anchor, NGC 4258. In concert with the Pantheon+ SN Ia sample, this analysis produces a (baseline) result ofH0= 73.22 ± 2.06 km s−1Mpc−1. The largest difference inH0between this and similar studies employing the TRGB derives from corrections for SN survey differences and local flows used in the most recent SN Ia compilations that were absent in earlier studies. The SN-related differences total ∼2.0 km s−1Mpc−1. A smaller share, ∼1.4 km s−1Mpc−1, results from the inhomogeneity of the TRGB calibration across the distance ladder. We employ a grid of 108 variants around the optimal TRGB algorithm and find that the median of the variants is 72.94 ± 1.98 km s−1Mpc−1with an additional uncertainty due to algorithm choices of 0.83 km s−1Mpc−1. None of these TRGB variants result in anH0of less than 71.6 km s−1Mpc−1.

    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available May 20, 2024
  3. Free, publicly-accessible full text available April 1, 2024
  4. We study the nature of the debated thermal Hall effect in the candidate Kitaev material α-RuCl3. Without assuming the existence of a gapped spin liquid, we show that a realistic minimal spin model in the canted zigzag phase suffices, at the level of linear spin-wave theory, to qualitatively explain the observed temperature and magnetic field dependence of the non-quantized thermal Hall conductivity κ_xy, with its origin lying in the Berry curvature of the magnon bands. The magnitude of the effect is however too small compared to the measurement by Czajka et al. [Nat. Mater. 22, 36-41 (2023)], even after scanning a broad range of model parameters so as to maximize κ_xy/T. Recent experiments suggest that phonons play an important role, which we show couple to the spins, endowing phonons with chirality. The resulting intrinsic contribution, from both magnons and phonons, is however still insufficient to explain the observed magnitude of the Hall signal. After careful analysis of the extrinsic phonon mechanisms, we use the recent experimental data on thermal transport in α-RuCl3 by Lefrançois et al. [Phys. Rev. X 12, 021025 (2022)] to determine the phenomenological ratio of the extrinsic and intrinsic contributions η≡κ_E/κ_I. We find η=1.2±0.5, which when combined with our computed intrinsic value, explains quantitavely both the magnitude and detailed temperature dependence of the experimental thermal Hall effect in α-RuCl3. 
    more » « less
    Free, publicly-accessible full text available January 18, 2024
  5. Free, publicly-accessible full text available January 1, 2024
  6. Tran, Duc ; Thai, My ; Krishnamachari, Bhaskar (Ed.)
    The security and performance of blockchain systems such as Bitcoin critically rely on the P2P network. This paper aims to investigate blockchain P2P networks. We explore the topologies, peer discovery, and data forwarding and examine the security and performance of the P2P network. Further, we formulate an optimization problem to study the theoretical limit of the performance and provide a solution to achieve optimal performance in a blockchain P2P network. 
    more » « less
  7. Zingoni, A. (Ed.)
    This paper presents two case studies of the repurposing projects of decommissioned wind turbine blades in architectural and structural engineering applications conducted under a multinational research project is entitled “Re-Wind” ( that was funded by the US-Ireland Tripartite program. The group has worked closely together in the Re-Wind Network over the past five years to conduct research on the topic of repurposing of decommissioned FRP wind turbine blades. Repurposing is defined by the ReWind team as the reverse engineering, redesigning and remanufacturing of a wind blade that has reached the end of its life on a turbine and taken out of service and then reused as a load-bearing structural element in a new structure (e.g., bridge, transmission pole, sound barrier, sea-wall, shelter). Further repurposing examples are provided in a publicly available Re-Wind Design Catalog. The Re-Wind Network was the first group to develop practical methods and design procedures to make these new “second-life” structures. The Network has developed design and construction details for two full-size prototype demonstration structures – a pedestrian bridge constructed in Cork, Ireland in January 2022 and a transmission pole to be constructed at the Smoky Hills Wind Farm in Lincoln and Ellsworth Counties, in Kansas, USA in the late 2022. The paper provides details on the planning, design, analysis, testing and construction of these two demonstration projects. 
    more » « less